Fabrication of PANI–ZnO nanocomposite thin film for room temperature methanol sensor
In the recent past, polymer–metal oxide nanocomposites have been identified as one of the key and new class of materials for fabricating gas sensors owing to their swift redox characteristics. In this line of thought, chemical oxidative process was employed to synthesize zinc oxide (ZnO) and polyani...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2017-08, Vol.28 (15), p.10799-10805 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the recent past, polymer–metal oxide nanocomposites have been identified as one of the key and new class of materials for fabricating gas sensors owing to their swift redox characteristics. In this line of thought, chemical oxidative process was employed to synthesize zinc oxide (ZnO) and polyaniline (PANI) nanocomposite thin films with different mass concentrations of ZnO to explore their gas sensing signatures. X-ray diffraction patterns and Fourier transform infrared spectra confirmed the formation of pure ZnO and PANI–ZnO composites. Field emission scanning electron micrographs revealed the leaf like structure of ZnO, porous nature of PANI and the uniformly distributed blend of these two structures for the composite films. Further, the room temperature gas/vapour sensing characteristics revealed the selective nature of nanocomposite films towards methanol vapour in the presence of other vapours with better response, swift response and recovery times of 7 and 20 s respectively. |
---|---|
ISSN: | 0957-4522 1573-482X |
DOI: | 10.1007/s10854-017-6857-y |