KAM for Beating Solutions of the Quintic NLS
We consider the nonlinear Schrödinger equation of degree five on the circle T = R / 2 π . We prove the existence of quasi-periodic solutions with four frequencies which bifurcate from “resonant” solutions [studied in Grébert and Thomann (Ann Inst Henri Poincaré Anal Non Linéaire 29(3):455–477, 2012...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2017-09, Vol.354 (3), p.1101-1132 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the nonlinear Schrödinger equation of degree five on the circle
T
=
R
/
2
π
. We prove the existence of quasi-periodic solutions with four frequencies which bifurcate from “resonant” solutions [studied in Grébert and Thomann (Ann Inst Henri Poincaré Anal Non Linéaire 29(3):455–477,
2012
)] of the system obtained by truncating the Hamiltonian after one step of Birkhoff normal form, exhibiting recurrent exchange of energy between some Fourier modes. The existence of these quasi-periodic solutions is a purely nonlinear effect. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-017-2925-7 |