アルミナ粒子分散マグネシウムとマグネシウムで構成された積層成形放電プラズマ焼結体の作製

To reduce the weight of 20 vol% Al2O3-particle-dispersed Mg (Al2O3/Mg) compacts produced by spark plasma sintering (SPS), which are much harder than practical high strength AZ91 Mg alloys, 20/0/20 vol% laminated SPS compacts sandwiching a lightweight 0 vol% Al2O3/Mg (0 vol%) layer between two 20 vol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nihon Kinzoku Gakkai shi (1952) 2017/07/01, Vol.81(7), pp.376-381
Hauptverfasser: 川森, 重弘, 藤原, 弘, 長井, 美憲, 春日, 幸生
Format: Artikel
Sprache:jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To reduce the weight of 20 vol% Al2O3-particle-dispersed Mg (Al2O3/Mg) compacts produced by spark plasma sintering (SPS), which are much harder than practical high strength AZ91 Mg alloys, 20/0/20 vol% laminated SPS compacts sandwiching a lightweight 0 vol% Al2O3/Mg (0 vol%) layer between two 20 vol% Al2O3/Mg (20 vol%) layers were fabricated by a mechanical milling/SPS process, and their microstructures and mechanical properties were investigated. The density of the 20/0/20 vol% laminated SPS compacts was 1.88 Mg·m-3, and they could be lightened to approximately 80% of the weight of equivalent 20 vol% SPS compacts. The 20/0/20 vol% laminated SPS compacts had a slightly higher hardness than the 20 vol% SPS compacts and a much higher hardness than AZ91 alloys. The bending strength of the 20/0/20 vol% laminated SPS compacts was almost the same as that of the 20 vol% SPS compacts, and was higher than the value calculated from those of the 20 and 0 vol% SPS compacts using the rule of mixtures. A new phase appeared at the flat interface between the 20 and 0 vol% layers with excellent adhesion to the adjoining layers, so this phase probably had a beneficial effect on the bending strength of the 20/0/20 vol% laminated SPS compacts. The new phase generated a monotonically decreasing hardness gradient from the 20 vol% layer to the 0 vol% layer and was formed by diffusion of Al and O from the 20 vol% layer and diffusion of Mg from the 0 vol% layer. The new phase most likely consisted of αMg, MgO, and Mg17Al12, and the concentrations of Al in the αMg, MgO, and Mg17Al12 components of this phase were considered to decrease from the 20 vol% layer to the 0 vol% layer. Mater. Trans. 58(2017) 206-210に掲載
ISSN:0021-4876
1880-6880
DOI:10.2320/jinstmet.J2017010