Stable spike clusters for the one-dimensional Gierer–Meinhardt system
We consider the Gierer–Meinhardt system with precursor inhomogeneity and two small diffusivities in an interval $$\begin{equation*} \left\{ \begin{array}{ll} A_t=\epsilon^2 A''- \mu(x) A+\frac{A^2}{H}, &x\in(-1, 1),\,t>0,\\[3mm] \tau H_t=D H'' -H+ A^2, & x\in (-1, 1),\...
Gespeichert in:
Veröffentlicht in: | European journal of applied mathematics 2017-08, Vol.28 (4), p.576-635 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the Gierer–Meinhardt system with precursor inhomogeneity and two small diffusivities in an interval
$$\begin{equation*}
\left\{
\begin{array}{ll}
A_t=\epsilon^2 A''- \mu(x) A+\frac{A^2}{H}, &x\in(-1, 1),\,t>0,\\[3mm]
\tau H_t=D H'' -H+ A^2, & x\in (-1, 1),\,t>0,\\[3mm]
A' (-1)= A' (1)= H' (-1) = H' (1) =0,
\end{array}
\right.
\end{equation*}$$
$$\begin{equation*}\mbox{where } \quad 0 0 and we have μ(t
0) > 0. Here, N is an arbitrary positive integer. Further, we show that this solution is linearly stable. We explicitly compute all eigenvalues, both large (of order O(1)) and small (of order o(1)). The main features of studying the Gierer–Meinhardt system in this setting are as follows: (i) it is biologically relevant since it models a hierarchical process (pattern formation of small-scale structures induced by a pre-existing large-scale inhomogeneity); (ii) it contains three different spatial scales two of which are small: the O(1) scale of the precursor inhomogeneity μ(x), the
$O(\sqrt{D})$
scale of the inhibitor diffusivity and the O(ε) scale of the activator diffusivity; (iii) the expressions can be made explicit and often have a particularly simple form. |
---|---|
ISSN: | 0956-7925 1469-4425 |
DOI: | 10.1017/S0956792516000450 |