Efficient Batched Distance, Closeness and Betweenness Centrality Computation in Unweighted and Weighted Graphs

Distance and centrality computations are important building blocks for modern graph databases as well as for dedicated graph analytics systems. Two commonly used centrality metrics are the compute-intense closeness and betweenness centralities, which require numerous expensive shortest distance calc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Datenbank-Spektrum : Zeitschrift für Datenbanktechnologie : Organ der Fachgruppe Datenbanken der Gesellschaft für Informatik e.V 2017, Vol.17 (2), p.169-182
Hauptverfasser: Then, Manuel, Günnemann, Stephan, Kemper, Alfons, Neumann, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Distance and centrality computations are important building blocks for modern graph databases as well as for dedicated graph analytics systems. Two commonly used centrality metrics are the compute-intense closeness and betweenness centralities, which require numerous expensive shortest distance calculations. We propose batched algorithm execution to run multiple distance and centrality computations at the same time and let them share common graph and data accesses. Batched execution amortizes the high cost of random memory accesses and presents new vectorization potential on modern CPUs and compute accelerators. We show how batched algorithm execution can be leveraged to significantly improve the performance of distance, closeness, and betweenness centrality calculations on unweighted and weighted graphs. Our evaluation demonstrates that batched execution can improve the runtime of these common metrics by over an order of magnitude.
ISSN:1618-2162
1610-1995
DOI:10.1007/s13222-017-0261-x