Decomposing Single Images for Layered Photo Retouching

Photographers routinely compose multiple manipulated photos of the same scene into a single image, producing a fidelity difficult to achieve using any individual photo. Alternately, 3D artists set up rendering systems to produce layered images to isolate individual aspects of the light transport, wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer graphics forum 2017-07, Vol.36 (4), p.15-25
Hauptverfasser: Innamorati, Carlo, Ritschel, Tobias, Weyrich, Tim, Mitra, Niloy J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Photographers routinely compose multiple manipulated photos of the same scene into a single image, producing a fidelity difficult to achieve using any individual photo. Alternately, 3D artists set up rendering systems to produce layered images to isolate individual aspects of the light transport, which are composed into the final result in post‐production. Regrettably, these approaches either take considerable time and effort to capture, or remain limited to synthetic scenes. In this paper, we suggest a method to decompose a single image into multiple layers that approximates effects such as shadow, diffuse illumination, albedo, and specular shading. To this end, we extend the idea of intrinsic images along two axes: first, by complementing shading and reflectance with specularity and occlusion, and second, by introducing directional dependence. We do so by training a convolutional neural network (CNN) with synthetic data. Such decompositions can then be manipulated in any off‐the‐shelf image manipulation software and composited back. We demonstrate the effectiveness of our decomposition on synthetic (i. e., rendered) and real data (i. e., photographs), and use them for photo manipulations, which are otherwise impossible to perform based on single images. We provide comparisons with state‐of‐the‐art methods and also evaluate the quality of our decompositions via a user study measuring the effectiveness of the resultant photo retouching setup. Supplementary material and code are available for research use at geometry.cs.ucl.ac.uk/projects/2017/layered-retouching.
ISSN:0167-7055
1467-8659
DOI:10.1111/cgf.13220