Importance of fuel treatment for limiting moderate-to-high intensity fire: findings from comparative fire modelling

Context Wildland fire intensity influences natural communities, soil properties, erosion, and sequestered carbon. Measuring effectiveness of fuel treatment for reducing area of higher intensity unplanned fire is argued to be more meaningful than determining effect on total unplanned area burned. Obj...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Landscape ecology 2017-07, Vol.32 (7), p.1473-1483
Hauptverfasser: Cary, Geoffrey J., Davies, Ian D., Bradstock, Ross A., Keane, Robert E., Flannigan, Mike D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Context Wildland fire intensity influences natural communities, soil properties, erosion, and sequestered carbon. Measuring effectiveness of fuel treatment for reducing area of higher intensity unplanned fire is argued to be more meaningful than determining effect on total unplanned area burned. Objectives To contrast the relative importance of fuel treatment effort, ignition management effort and weather for simulated total area burned and area burned by moderate-to-high intensity fire, and to determine the level of consensus among independent models. Methods Published and previously unreported data from simulation experiments using three landscape fire models, two incorporating weather from south-eastern Australia and one with weather from a Mediterranean location, were compared. The comparison explored variation in fuel treatment and ignition management effort across ten separate years of daily weather. Importance of these variables was measured by the Relative Sum of Squares in a Generalised Linear Model analysis of total pixels burned and pixels burned with moderate-to-high intensity fire. Results Variation in fuel treatment effort, from 0 to 30 % of landscape treated, explained less than 7 % of variation in both total area burned and area burned by moderate-to-high intensity fire. This was markedly less than that explained by variation in ignition management effort (0–75 % of ignitions prevented or extinguished) and weather year in all models. Conclusions Increased fuel treatment effort, within a range comparable to practical operational limits, was no more important in controlling simulated moderate-to-high intensity unplanned fire than it was for total unplanned area burned.
ISSN:0921-2973
1572-9761
DOI:10.1007/s10980-016-0420-8