Least Squares Methods in Krylov Subspaces

The paper considers iterative algorithms for solving large systems of linear algebraic equations with sparse nonsymmetric matrices based on solving least squares problems in Krylov subspaces and generalizing the alternating Anderson–Jacobi method. The approaches suggested are compared with the class...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2017-08, Vol.224 (6), p.900-910
1. Verfasser: Il’in, V. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper considers iterative algorithms for solving large systems of linear algebraic equations with sparse nonsymmetric matrices based on solving least squares problems in Krylov subspaces and generalizing the alternating Anderson–Jacobi method. The approaches suggested are compared with the classical Krylov methods, represented by the method of semiconjugate residuals. The efficiency of parallel implementation and speedup are estimated and illustrated with numerical results obtained for a series of linear systems resulting from discretization of convection-diffusion boundary-value problems.
ISSN:1072-3374
1573-8795
DOI:10.1007/s10958-017-3460-y