The Besicovitch–Federer projection theorem is false in every infinite-dimensional Banach space
We construct a purely unrectifiable set of finite H 1 -measure in every infinite-dimensional separable Banach space X whose image under every 0 ≠ x * ∈ X * has positive Lebesgue measure. This demonstrates completely the failure of the Besicovitch–Federer projection theorem in infinitedimensional Ban...
Gespeichert in:
Veröffentlicht in: | Israel journal of mathematics 2017-06, Vol.220 (1), p.175-188 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We construct a purely unrectifiable set of finite
H
1
-measure in every infinite-dimensional separable Banach space
X
whose image under every 0 ≠
x
* ∈
X
* has positive Lebesgue measure. This demonstrates completely the failure of the Besicovitch–Federer projection theorem in infinitedimensional Banach spaces. |
---|---|
ISSN: | 0021-2172 1565-8511 |
DOI: | 10.1007/s11856-017-1514-y |