Symmetric multiple chessboard complexes and a new theorem of Tverberg type
We prove a new theorem of Tverberg–van Kampen–Flores type, which confirms a conjecture of Blagojević et al. about the existence of ‘balanced Tverberg partitions’ (Conjecture 6.6 in [Tverberg plus constraints, Bull. London Math. Soc. 46:953–967 ( 2014 ]). The conditions in this theorem are somewhat w...
Gespeichert in:
Veröffentlicht in: | Journal of algebraic combinatorics 2017-08, Vol.46 (1), p.15-31 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove a new theorem of Tverberg–van Kampen–Flores type, which confirms a conjecture of Blagojević et al. about the existence of ‘balanced Tverberg partitions’ (Conjecture 6.6 in [Tverberg plus constraints, Bull. London Math. Soc. 46:953–967 (
2014
]). The conditions in this theorem are somewhat weaker than in the original conjecture, and we show that the theorem is optimal in the sense that the new (weakened) condition is also necessary. Among the consequences is a positive answer (Theorem
7.2
) to the ‘balanced case’ of the question asking whether each
admissible
r
-tuple is
Tverberg prescribable
(Blagojević et al.
2014
, Question 6.9). |
---|---|
ISSN: | 0925-9899 1572-9192 |
DOI: | 10.1007/s10801-017-0743-9 |