Symmetric multiple chessboard complexes and a new theorem of Tverberg type

We prove a new theorem of Tverberg–van Kampen–Flores type, which confirms a conjecture of Blagojević et al. about the existence of ‘balanced Tverberg partitions’ (Conjecture 6.6 in [Tverberg plus constraints, Bull. London Math. Soc. 46:953–967 ( 2014 ]). The conditions in this theorem are somewhat w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebraic combinatorics 2017-08, Vol.46 (1), p.15-31
Hauptverfasser: Jojić, Duško, Vrećica, Siniša T., Živaljević, Rade T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove a new theorem of Tverberg–van Kampen–Flores type, which confirms a conjecture of Blagojević et al. about the existence of ‘balanced Tverberg partitions’ (Conjecture 6.6 in [Tverberg plus constraints, Bull. London Math. Soc. 46:953–967 ( 2014 ]). The conditions in this theorem are somewhat weaker than in the original conjecture, and we show that the theorem is optimal in the sense that the new (weakened) condition is also necessary. Among the consequences is a positive answer (Theorem  7.2 ) to the ‘balanced case’ of the question asking whether each admissible r -tuple is Tverberg prescribable (Blagojević et al. 2014 , Question 6.9).
ISSN:0925-9899
1572-9192
DOI:10.1007/s10801-017-0743-9