A boundary Schwarz lemma on the classical domain of type I

Let RI(m,n) be the classical domain of type I in C^m×n with 1≤m≤n.We obtain the optimal estimates of the eigenvalues of the Fréchet derivative Df(Z) at a smooth boundary fixed point Z of RI(m,n)for a holomorphic self-mapping f of RL(m,n).We provide a necessary and sufficient condition such that the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Mathematics 2017-07, Vol.60 (7), p.1239-1258
Hauptverfasser: Liu, TaiShun, Tang, XiaoMin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let RI(m,n) be the classical domain of type I in C^m×n with 1≤m≤n.We obtain the optimal estimates of the eigenvalues of the Fréchet derivative Df(Z) at a smooth boundary fixed point Z of RI(m,n)for a holomorphic self-mapping f of RL(m,n).We provide a necessary and sufficient condition such that the boundary points of RI(m,n) are smooth,and give some properties of the smooth boundary points of RL(m,n).Our results extend the classical Schwarz lemma at the boundary of the unit disk △ to RI(m,n),which may be applied to get some optimal estimates in several complex variables.
ISSN:1674-7283
1869-1862
DOI:10.1007/s11425-015-0225-7