An out-of-sample evaluation framework for DEA with application in bankruptcy prediction

Nowadays, data envelopment analysis (DEA) is a well-established non-parametric methodology for performance evaluation and benchmarking. DEA has witnessed a widespread use in many application areas since the publication of the seminal paper by Charnes, Cooper and Rhodes in 1978. However, to the best...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of operations research 2017-07, Vol.254 (1-2), p.235-250
Hauptverfasser: Ouenniche, Jamal, Tone, Kaoru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nowadays, data envelopment analysis (DEA) is a well-established non-parametric methodology for performance evaluation and benchmarking. DEA has witnessed a widespread use in many application areas since the publication of the seminal paper by Charnes, Cooper and Rhodes in 1978. However, to the best of our knowledge, no published work formally addressed out-of-sample evaluation in DEA. In this paper, we fill this gap by proposing a framework for the out-of-sample evaluation of decision making units. We tested the performance of the proposed framework in risk assessment and bankruptcy prediction of companies listed on the London Stock Exchange. Numerical results demonstrate that the proposed out-of-sample evaluation framework for DEA is capable of delivering an outstanding performance and thus opens a new avenue for research and applications in risk modelling and analysis using DEA as a non-parametric frontier-based classifier and makes DEA a real contender in industry applications in banking and investment.
ISSN:0254-5330
1572-9338
DOI:10.1007/s10479-017-2431-5