Density of States for Random Band Matrices in Two Dimensions
We consider a two-dimensional random band matrix ensemble, in the limit of infinite volume and fixed but large band width W . For this model, we rigorously prove smoothness of the averaged density of states. We also prove that the resulting expression coincides with Wigner’s semicircle law with a pr...
Gespeichert in:
Veröffentlicht in: | Annales Henri Poincaré 2017-07, Vol.18 (7), p.2367-2413 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a two-dimensional random band matrix ensemble, in the limit of infinite volume and fixed but large band width
W
. For this model, we rigorously prove smoothness of the averaged density of states. We also prove that the resulting expression coincides with Wigner’s semicircle law with a precision
W
-
2
+
δ
,
where
δ
→
0
when
W
→
∞
.
The proof uses the supersymmetric approach and extends results by Disertori et al. (Commun Math Phys 232(1):83–124,
2002
) from three to two dimensions. |
---|---|
ISSN: | 1424-0637 1424-0661 |
DOI: | 10.1007/s00023-017-0572-3 |