Density of States for Random Band Matrices in Two Dimensions

We consider a two-dimensional random band matrix ensemble, in the limit of infinite volume and fixed but large band width W . For this model, we rigorously prove smoothness of the averaged density of states. We also prove that the resulting expression coincides with Wigner’s semicircle law with a pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales Henri Poincaré 2017-07, Vol.18 (7), p.2367-2413
Hauptverfasser: Disertori, Margherita, Lager, Mareike
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a two-dimensional random band matrix ensemble, in the limit of infinite volume and fixed but large band width W . For this model, we rigorously prove smoothness of the averaged density of states. We also prove that the resulting expression coincides with Wigner’s semicircle law with a precision W - 2 + δ , where δ → 0 when W → ∞ . The proof uses the supersymmetric approach and extends results by Disertori et al. (Commun Math Phys 232(1):83–124, 2002 ) from three to two dimensions.
ISSN:1424-0637
1424-0661
DOI:10.1007/s00023-017-0572-3