The Geometry of Axisymmetric Ideal Fluid Flows with Swirl
The sectional curvature of the volume preserving diffeomorphism group of a Riemannian manifold M can give information about the stability of inviscid, incompressible fluid flows on M . We demonstrate that the submanifold of the volumorphism group of the solid flat torus generated by axisymmetric flu...
Gespeichert in:
Veröffentlicht in: | Arnold mathematical journal 2017-06, Vol.3 (2), p.175-185 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The sectional curvature of the volume preserving diffeomorphism group of a Riemannian manifold
M
can give information about the stability of inviscid, incompressible fluid flows on
M
. We demonstrate that the submanifold of the volumorphism group of the solid flat torus generated by axisymmetric fluid flows with swirl, denoted by
D
μ
,
E
(
M
)
, has positive sectional curvature in every section containing the field
X
=
u
(
r
)
∂
θ
iff
∂
r
(
r
u
2
)
>
0
. This is in sharp contrast to the situation on
D
μ
(
M
)
, where only Killing fields
X
have nonnegative sectional curvature in all sections containing it. We also show that this criterion guarantees the existence of conjugate points on
D
μ
,
E
(
M
)
along the geodesic defined by
X
. |
---|---|
ISSN: | 2199-6792 2199-6806 |
DOI: | 10.1007/s40598-016-0058-2 |