Small shear modulus of cubic CaSiO3 perovskite

Ca‐perovskite (CaPv) is considered to be one of the most abundant minerals in the Earth's lower mantle (LM). Furthermore, previous static calculations and mean‐field theory suggest that it has a much larger shear modulus than bridgmanite (MgPv). In this study, the elasticity of cubic CaPv was r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2015-04, Vol.42 (8), p.2718-2726
Hauptverfasser: Kawai, Kenji, Tsuchiya, Taku
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ca‐perovskite (CaPv) is considered to be one of the most abundant minerals in the Earth's lower mantle (LM). Furthermore, previous static calculations and mean‐field theory suggest that it has a much larger shear modulus than bridgmanite (MgPv). In this study, the elasticity of cubic CaPv was reinvestigated using the density functional constant‐temperature first principles molecular dynamics method under the correct conditions to simulate its elasticity. Our new results clearly demonstrate that cubic CaPv has comparable bulk and slightly smaller shear moduli than Fe‐bearing MgPv. This is because the boundary condition for the supercell used in this study allows for the rotational phonon motion of SiO6 octahedra under strain, which predominantly affects the decrease in C11 and C44. Acoustic wave velocities determined from the elastic moduli indicate that cubic CaPv has slower velocities and larger densities than Fe‐bearing MgPv and preliminary reference Earth model in the LM. This suggests that if CaPv‐rich material exists, it can accumulate in the lowermost LM and produce a seismically low‐velocity anomaly. Key Points Smaller G of CaPv due to rotational relaxation of SiO6 octahedra for strain Cubic CaPv has slower elastic velocities in the lower mantle SiO6 framework controls elastic properties in the lower mantle
ISSN:0094-8276
1944-8007
DOI:10.1002/2015GL063446