Generalized super-twisting sliding mode control with a nonlinear sliding surface for robust and energy-efficient controller of a quad-rotor helicopter

This paper proposes a time-varying sliding surface for a second-order sliding mode controller to improve the control performance and energy efficiency of a quad-rotor helicopter. The time-varying sliding surface is designed with a nonlinear function to provide varying properties of the closed-loop d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science Journal of mechanical engineering science, 2017-06, Vol.231 (11), p.2042-2053
Hauptverfasser: Sumantri, Bambang, Uchiyama, Naoki, Sano, Shigenori
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a time-varying sliding surface for a second-order sliding mode controller to improve the control performance and energy efficiency of a quad-rotor helicopter. The time-varying sliding surface is designed with a nonlinear function to provide varying properties of the closed-loop dynamics in order to reduce energy consumption. It is shown that the second-order sliding mode technique, known as a generalized super twisting algorithm, providing a robust controller and a nonlinear sliding surface is effective in reducing the energy consumption. A Lyapunov stability analysis is described to prove the stability of the proposed method. The effectiveness and reliability of the proposed method are evaluated by performing experiments several times using a quad-rotor helicopter experimental testbed under wind disturbance.
ISSN:0954-4062
2041-2983
DOI:10.1177/0954406216628897