Classes of uniform convergence of spectral expansions for the one-dimensional Schrödinger operator with a distribution potential

For the self-adjoint Schrödinger operator ℒ defined on ℝ by the differential operation −( d / dx ) 2 + q ( x ) with a distribution potential q ( x ) uniformly locally belonging to the space W 2 −1 , we describe classes of functions whose spectral expansions corresponding to the operator ℒ absolutely...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential equations 2017-05, Vol.53 (5), p.583-594
1. Verfasser: Kritskov, L. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For the self-adjoint Schrödinger operator ℒ defined on ℝ by the differential operation −( d / dx ) 2 + q ( x ) with a distribution potential q ( x ) uniformly locally belonging to the space W 2 −1 , we describe classes of functions whose spectral expansions corresponding to the operator ℒ absolutely and uniformly converge on the entire line ℝ. We characterize the sharp convergence rate of the spectral expansion of a function using a two-sided estimate obtained in the paper for its generalized Fourier transforms.
ISSN:0012-2661
1608-3083
DOI:10.1134/S0012266117050020