Classes of uniform convergence of spectral expansions for the one-dimensional Schrödinger operator with a distribution potential
For the self-adjoint Schrödinger operator ℒ defined on ℝ by the differential operation −( d / dx ) 2 + q ( x ) with a distribution potential q ( x ) uniformly locally belonging to the space W 2 −1 , we describe classes of functions whose spectral expansions corresponding to the operator ℒ absolutely...
Gespeichert in:
Veröffentlicht in: | Differential equations 2017-05, Vol.53 (5), p.583-594 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For the self-adjoint Schrödinger operator ℒ defined on ℝ by the differential operation −(
d
/
dx
)
2
+
q
(
x
) with a distribution potential
q
(
x
) uniformly locally belonging to the space
W
2
−1
, we describe classes of functions whose spectral expansions corresponding to the operator ℒ absolutely and uniformly converge on the entire line ℝ. We characterize the sharp convergence rate of the spectral expansion of a function using a two-sided estimate obtained in the paper for its generalized Fourier transforms. |
---|---|
ISSN: | 0012-2661 1608-3083 |
DOI: | 10.1134/S0012266117050020 |