Certain decompositions of matrices over Abelian rings

A ring R is (weakly) nil clean provided that every element in R is the sum of a (weak) idempotent and a nilpotent. We characterize nil and weakly nil matrix rings over abelian rings. Let R be abelian, and let n ∈ ℕ. We prove that M n ( R ) is nil clean if and only if R / J ( R ) is Boolean and M n (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Czechoslovak Mathematical Journal 2017-06, Vol.67 (2), p.417-425
Hauptverfasser: Ashrafi, Nahid, Sheibani, Marjan, Chen, Huanyin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A ring R is (weakly) nil clean provided that every element in R is the sum of a (weak) idempotent and a nilpotent. We characterize nil and weakly nil matrix rings over abelian rings. Let R be abelian, and let n ∈ ℕ. We prove that M n ( R ) is nil clean if and only if R / J ( R ) is Boolean and M n ( J ( R )) is nil. Furthermore, we prove that R is weakly nil clean if and only if R is periodic; R / J ( R ) is ℤ 3 , B or ℤ 3 ⊕ B where B is a Boolean ring, and that M n ( R ) is weakly nil clean if and only if M n ( R ) is nil clean for all n ≥ 2.
ISSN:0011-4642
1572-9141
DOI:10.21136/CMJ.2017.0677-15