Certain decompositions of matrices over Abelian rings
A ring R is (weakly) nil clean provided that every element in R is the sum of a (weak) idempotent and a nilpotent. We characterize nil and weakly nil matrix rings over abelian rings. Let R be abelian, and let n ∈ ℕ. We prove that M n ( R ) is nil clean if and only if R / J ( R ) is Boolean and M n (...
Gespeichert in:
Veröffentlicht in: | Czechoslovak Mathematical Journal 2017-06, Vol.67 (2), p.417-425 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A ring
R
is (weakly) nil clean provided that every element in
R
is the sum of a (weak) idempotent and a nilpotent. We characterize nil and weakly nil matrix rings over abelian rings. Let
R
be abelian, and let
n
∈ ℕ. We prove that
M
n
(
R
) is nil clean if and only if
R
/
J
(
R
) is Boolean and
M
n
(
J
(
R
)) is nil. Furthermore, we prove that
R
is weakly nil clean if and only if
R
is periodic;
R
/
J
(
R
) is ℤ
3
,
B
or ℤ
3
⊕
B
where
B
is a Boolean ring, and that
M
n
(
R
) is weakly nil clean if and only if
M
n
(
R
) is nil clean for all
n
≥ 2. |
---|---|
ISSN: | 0011-4642 1572-9141 |
DOI: | 10.21136/CMJ.2017.0677-15 |