On the number of special numbers
For lack of a better word, a number is called special if it has mutually distinct exponents in its canonical prime factorizaton for all exponents. Let V ( x ) be the number of special numbers ≤ x . We will prove that there is a constant c >1 such that V ( x ) ∼ cx log x . We will make some remark...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Indian Academy of Sciences. Mathematical sciences 2017-06, Vol.127 (3), p.423-430 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For lack of a better word, a number is called
special
if it has mutually distinct exponents in its canonical prime factorizaton for all exponents. Let
V
(
x
) be the number of special numbers ≤
x
. We will prove that there is a constant
c
>1 such that
V
(
x
)
∼
cx
log
x
. We will make some remarks on determining the error term at the end. Using the explicit
abc
conjecture, we will study the existence of 23 consecutive special integers. |
---|---|
ISSN: | 0253-4142 0973-7685 |
DOI: | 10.1007/s12044-016-0326-z |