On the number of special numbers

For lack of a better word, a number is called special if it has mutually distinct exponents in its canonical prime factorizaton for all exponents. Let V ( x ) be the number of special numbers ≤ x . We will prove that there is a constant c >1 such that V ( x ) ∼ cx log x . We will make some remark...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Indian Academy of Sciences. Mathematical sciences 2017-06, Vol.127 (3), p.423-430
Hauptverfasser: AKTAŞ, KEVSER, MURTY, M RAM
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For lack of a better word, a number is called special if it has mutually distinct exponents in its canonical prime factorizaton for all exponents. Let V ( x ) be the number of special numbers ≤ x . We will prove that there is a constant c >1 such that V ( x ) ∼ cx log x . We will make some remarks on determining the error term at the end. Using the explicit abc conjecture, we will study the existence of 23 consecutive special integers.
ISSN:0253-4142
0973-7685
DOI:10.1007/s12044-016-0326-z