Highly Efficient, Selective, and Stable CO2 Electroreduction on a Hexagonal Zn Catalyst
Electrocatalytic CO2 conversion into fuel is a prospective strategy for the sustainable energy production. However, still many parts of the catalyst such as low catalytic activity, selectivity, and stability are challenging. Herein, a hierarchical hexagonal Zn catalyst showed highly efficient and, m...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie 2016-08, Vol.128 (32), p.9443-9446 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng ; ger |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electrocatalytic CO2 conversion into fuel is a prospective strategy for the sustainable energy production. However, still many parts of the catalyst such as low catalytic activity, selectivity, and stability are challenging. Herein, a hierarchical hexagonal Zn catalyst showed highly efficient and, more importantly, stable performance as an electrocatalyst for selectively producing CO. Moreover, we found that its high selectivity for CO is attributed to morphology. In electrochemical analysis, Zn (101) facet is favorable to CO formation whereas Zn (002) facet favors the H2 evolution during CO2 electrolysis. Indeed, DFT calculations showed that (101) facet lowers a reduction potential for CO2 to CO by more effectively stabilizing a .COOH intermediate than (002) facet. This further suggests that tuning the crystal structure to control (101)/(002) facet ratio of Zn can be considered as a key design principle to achieve a desirable product from Zn catalyst.
CO2‐Umwandlung: Eine Strategie zur effizienten CO2‐Reduktion nutzt einen hierarchischen hexagonalen Zn‐Katalysator, der eine hochselektive und stabile Leistung in der CO‐Produktion zeigt (siehe Bild). Die Produktselektivität kann über die Zn‐Kristallstruktur und das Kristallebenenverhältnis (101)/(002) gesteuert werden. |
---|---|
ISSN: | 0044-8249 1521-3757 |
DOI: | 10.1002/ange.201602888 |