The self‐consistent charge density functional tight‐binding theory study of carbon adatoms using tuned Hubbard U parameters

The self‐consistent charge density functional tight‐binding (DFTB) theory is a useful tool for realizing the electronic structures of large molecular complex systems. In this study, the electronic structure of C61 formed by fullerene C60 with a carbon adatom is analyzed, using the fully localized li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of quantum chemistry 2017-02, Vol.117 (4), p.n/a
Hauptverfasser: Wang, Jia, Dai, Xing, Jiang, Wanrun, Yu, Tianrong, Wang, Zhigang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The self‐consistent charge density functional tight‐binding (DFTB) theory is a useful tool for realizing the electronic structures of large molecular complex systems. In this study, the electronic structure of C61 formed by fullerene C60 with a carbon adatom is analyzed, using the fully localized limit and pseudo self‐interaction correction methods of DFTB to adjust the Hubbard U parameter (DFTB + U). The results show that both the methods used to adjust U can significantly reduce the molecular orbital energy of occupied states localized on the defect carbon atom and improve the gap between highest occupied molecular orbital(HOMO) and lowest unoccupied molecular orbital(LUMO) of C61. This work will provide a methodological reference point for future DFTB calculations of the electronic structures of carbon materials. For the magnetic system C61, the HOMO‐LUMO gap can be significantly improved by appropriate forms of DFTB + U correction. U(FLL) correction can gradually lower the energy of HOMO and slightly increase the energy of LUMO, U(pSIC) can decrease all orbital energies both occupied and unoccupied states.
ISSN:0020-7608
1097-461X
DOI:10.1002/qua.25320