A fixed point problem with constraint inequalities via an implicit contraction

Recently, Jleli and Samet [Fixed Point Theory Appl. 2016 ( 2016 ), doi: 10.1186/s13663-016-0504-9 ] established an existence result for the following problem: Find x ∈ X such that x = T x , A x ⪯ 1 B x , C x ⪯ 2 D x , where ( X , d ) is a metric space equipped with the two partial orders ⪯ 1 and ⪯ 2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fixed point theory and applications 2017-06, Vol.19 (2), p.1145-1163
Hauptverfasser: Ansari, Arslan Hojat, Kumam, Poom, Samet, Bessem
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, Jleli and Samet [Fixed Point Theory Appl. 2016 ( 2016 ), doi: 10.1186/s13663-016-0504-9 ] established an existence result for the following problem: Find x ∈ X such that x = T x , A x ⪯ 1 B x , C x ⪯ 2 D x , where ( X , d ) is a metric space equipped with the two partial orders ⪯ 1 and ⪯ 2 , and T , A , B , C , D : X → X are given mappings. This existence result was obtained under a continuity assumption imposed on the mappings A , B , C and D . In this paper, we prove that the result of Jleli and Samet holds true by supposing that only A and B are continuous (or only C and D are continuous). Moreover, we prove that the considered problem has one and only one solution. We provide an example to show that our result is a significant generalization of that of Jleli and Samet. Moreover, we consider a more large class of mappings T : X → X satisfying a certain implicit contraction.
ISSN:1661-7738
1661-7746
DOI:10.1007/s11784-016-0320-1