Initial boundary value problem for generalized logarithmic improved Boussinesq equation

In this paper, we consider the initial boundary value problem for generalized logarithmic improved Boussinesq equation. By using the Galerkin method, logarithmic Sobolev inequality, logarithmic Gronwall inequality, and compactness theorem, we show the existence of global weak solution to the problem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2017-07, Vol.40 (10), p.3687-3697
Hauptverfasser: Hu, Qingying, Zhang, Hongwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider the initial boundary value problem for generalized logarithmic improved Boussinesq equation. By using the Galerkin method, logarithmic Sobolev inequality, logarithmic Gronwall inequality, and compactness theorem, we show the existence of global weak solution to the problem. By potential well theory, we show the norm of the solution will grow up as an exponential function as time goes to infinity under some suitable conditions. Furthermore, for the generalized logarithmic improved Boussinesq equation with damped term, we obtain the decay estimate of the energy. Copyright © 2016 John Wiley & Sons, Ltd.
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.4255