Periodic autoregressive stochastic volatility

This paper proposes a stochastic volatility model (PAR-SV) in which the log-volatility follows a first-order periodic autoregression. This model aims at representing time series with volatility displaying a stochastic periodic dynamic structure, and may then be seen as an alternative to the familiar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical inference for stochastic processes : an international journal devoted to time series analysis and the statistics of continuous time processes and dynamic systems 2017-07, Vol.20 (2), p.139-177
1. Verfasser: Aknouche, Abdelhakim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a stochastic volatility model (PAR-SV) in which the log-volatility follows a first-order periodic autoregression. This model aims at representing time series with volatility displaying a stochastic periodic dynamic structure, and may then be seen as an alternative to the familiar periodic GARCH process. The probabilistic structure of the proposed PAR-SV model such as periodic stationarity and autocovariance structure are first studied. Then, parameter estimation is examined through the quasi-maximum likelihood (QML) method where the likelihood is evaluated using the prediction error decomposition approach and Kalman filtering. In addition, a Bayesian MCMC method is also considered, where the posteriors are given from conjugate priors using the Gibbs sampler in which the augmented volatilities are sampled from the Griddy Gibbs technique in a single-move way. As a-by-product, period selection for the PAR-SV is carried out using the (conditional) deviance information criterion (DIC). A simulation study is undertaken to assess the performances of the QML and Bayesian Griddy Gibbs estimates in finite samples while applications of Bayesian PAR-SV modeling to daily, quarterly and monthly S&P 500 returns are considered.
ISSN:1387-0874
1572-9311
DOI:10.1007/s11203-016-9139-z