Influence of Metal Cations and Cholesterol on Lipid-amphotericin Membrane

Amphotericin B(AmB) has been widely used in antifungal therapy. AraB molecules combine with cholesterol to form pores that can be toxic to human cells, thus greatly limiting its clinical application. The interaction between Arab and the cell membrane may be influenced by potassimn, sodium and calciu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical research in Chinese universities 2017-06, Vol.33 (3), p.447-453
Hauptverfasser: Wang, Juan, Sun, Runguang, Hao, Changchun, Li, Tuo, Tian, Yuan, Zhang, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Amphotericin B(AmB) has been widely used in antifungal therapy. AraB molecules combine with cholesterol to form pores that can be toxic to human cells, thus greatly limiting its clinical application. The interaction between Arab and the cell membrane may be influenced by potassimn, sodium and calcium ions. Lq this study, the bilayer in large unilamellar lipid-drug liposomes with or without cholesterol was employed as a model membrane. N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)-1,2-dipalmitoyl-sn-glycero-3-phosphoetheanolamine(N-BD-PE) and 1-palmi-toyl-2-[6(7-nitrobenz-2-oxa-1,3-diazol-4-yl)aminodoclecanoyl]-sn-glysero-3-phosphocholine(6-NBD-PC) are two kinds of fluorescent lipid probes, and the NBD group is attached to the polar lipid headgroup in the former, but to the sn-2 fatty acyl chain in the latter. The effect of these metal cations on the lipid-drug membrane was monitored by red edge excitation shift(REES), fluorescence polarization, and the fluorescence lifetime of lipid probes in hydrophilic and hydrophobic areas of the membrane. These ions have different effects on the lipid-AraB membrane. Cholesterol can strengthen the packing ability of the membrane, which is influenced differently by potassium, sodium and calcium ions. Moreover, the influence of these ions on the membrane may be relative to the method of ion transportation through the membrane. This study is significant to understand the reduction of AraB's cellular toxicity.
ISSN:1005-9040
2210-3171
DOI:10.1007/s40242-017-6303-y