Numerical Analysis of Asymmetrically Bonded Composite Patch Repair and Effect of In-Plane Skewed Crack Front on the SIF

A nonlinear 3-D finite element analysis was conducted to analyze the crack front behavior of a center cracked aluminum plate, asymmetrically repaired with composite patch. According to experimental observations, the crack front was modeled as an inclined shape from the initial state where the crack...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of engineering research in Africa (Print) 2017-05, Vol.30, p.11-22
Hauptverfasser: Ali, Benhamena, Abdelghani, Baltach, Djebli, Abdelkader, Abdelkarim, Aid, Belabbess, Bachir Bouiedjra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A nonlinear 3-D finite element analysis was conducted to analyze the crack front behavior of a center cracked aluminum plate, asymmetrically repaired with composite patch. According to experimental observations, the crack front was modeled as an inclined shape from the initial state where the crack front is straight and parallel to the thickness direction from the patched side toward the un-patched side. The skew degree is found to strongly influence the stress intensity factor (SIF) distribution along the crack front. In effect, the obtained trends of the SIF’s distribution are different and changes during crack growth stages. The main finding is that regardless the crack front shape (inclination), the average stress intensity factor through the crack front remains constant and consequently, it means to be an effective parameter to estimate the fatigue life and crack growth of the asymmetrically patched structures. The performed models gave good results compared to the literature and the different findings correlate well with the experimental observations and make sense with a realistic crack development.
ISSN:1663-3571
1663-4144
1663-4144
DOI:10.4028/www.scientific.net/JERA.30.11