Mechanical properties of biaxially strained poly(l‐lactide) tubes: Strain rate and temperature dependence

ABSTRACT Poly(l‐lactide) (PLLA) is a bioabsorbable polymer with high stiffness and strength compared to the other commercially available bioabsorbable polymers. The properties of PLLA can be improved by straining, causing deformation‐mediated molecular orientation. PLLA tubes were biaxially strained...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2017-09, Vol.134 (33), p.n/a
Hauptverfasser: Løvdal, Alexandra Liv Vest, Andreasen, Jens W., Mikkelsen, Lars P., Agersted, Karsten, Almdal, Kristoffer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT Poly(l‐lactide) (PLLA) is a bioabsorbable polymer with high stiffness and strength compared to the other commercially available bioabsorbable polymers. The properties of PLLA can be improved by straining, causing deformation‐mediated molecular orientation. PLLA tubes were biaxially strained above their Tg for improvement of their strength, in a two‐step process (sequential straining). Mechanical properties and crystal morphology were investigated as a function of processing strain rate and temperature. DSC revealed that a low processing strain rate allows molecular chain relaxation in the direction of strain and the crystallization is suppressed. Faster strain rates on the other hand suppress chain relaxation, and results in crystalline tubes. The mechanical properties are influenced by both processing strain rate and temperature. Low strain rates allow chain relaxation resulting in the lowest strength and stiffness, whereas a larger stiffness and strength is achieved by increasing strain rate and temperature. Isotropic mechanical properties are only observed at high processing strain rates. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45192.
ISSN:0021-8995
1097-4628
DOI:10.1002/app.45192