Reversibility of Rings with Respect to the Jacobson Radical

Let R be a ring with identity and J ( R ) denote the Jacobson radical of R . A ring R is called J - reversible if for any a , b ∈ R , a b = 0 implies b a ∈ J ( R ) . In this paper, we give some properties of J -reversible rings. We prove that some results of reversible rings can be extended to J -re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mediterranean journal of mathematics 2017-06, Vol.14 (3), p.1-14, Article 137
Hauptverfasser: Calci, Mete Burak, Chen, Huanyin, Halicioglu, Sait, Harmanci, Abdullah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let R be a ring with identity and J ( R ) denote the Jacobson radical of R . A ring R is called J - reversible if for any a , b ∈ R , a b = 0 implies b a ∈ J ( R ) . In this paper, we give some properties of J -reversible rings. We prove that some results of reversible rings can be extended to J -reversible rings for this general setting. We show that J -quasipolar rings, local rings, semicommutative rings, central reversible rings and weakly reversible rings are J -reversible. As an application it is shown that every J -clean ring is directly finite.
ISSN:1660-5446
1660-5454
DOI:10.1007/s00009-017-0938-2