Reversibility of Rings with Respect to the Jacobson Radical
Let R be a ring with identity and J ( R ) denote the Jacobson radical of R . A ring R is called J - reversible if for any a , b ∈ R , a b = 0 implies b a ∈ J ( R ) . In this paper, we give some properties of J -reversible rings. We prove that some results of reversible rings can be extended to J -re...
Gespeichert in:
Veröffentlicht in: | Mediterranean journal of mathematics 2017-06, Vol.14 (3), p.1-14, Article 137 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
R
be a ring with identity and
J
(
R
) denote the Jacobson radical of
R
. A ring
R
is called
J
-
reversible
if for any
a
,
b
∈
R
,
a
b
=
0
implies
b
a
∈
J
(
R
)
. In this paper, we give some properties of
J
-reversible rings. We prove that some results of reversible rings can be extended to
J
-reversible rings for this general setting. We show that
J
-quasipolar rings, local rings, semicommutative rings, central reversible rings and weakly reversible rings are
J
-reversible. As an application it is shown that every
J
-clean ring is directly finite. |
---|---|
ISSN: | 1660-5446 1660-5454 |
DOI: | 10.1007/s00009-017-0938-2 |