Homotopy Types of Frobenius Complexes

Let Λ be a submonoid of the additive monoid N . There is a natural order on Λ defined by λ ≤ λ + μ for λ , μ ∈ Λ . A Frobenius complex of Λ is defined to be the order complex of an open interval of Λ. Suppose r ≥ 2 and let ρ be a reducible element of Λ. We construct the additive monoid Λ [ ρ / r ] o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of combinatorics 2017-06, Vol.21 (2), p.317-329
1. Verfasser: Tounai, Shouta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let Λ be a submonoid of the additive monoid N . There is a natural order on Λ defined by λ ≤ λ + μ for λ , μ ∈ Λ . A Frobenius complex of Λ is defined to be the order complex of an open interval of Λ. Suppose r ≥ 2 and let ρ be a reducible element of Λ. We construct the additive monoid Λ [ ρ / r ] obtained from Λ by adjoining a solution to the equation r α = ρ . We show that any Frobenius complex of Λ [ ρ / r ] is homotopy equivalent to a wedge of iterated suspensions of Frobenius complexes of Λ. As a consequence, we derive a formula for the multi-graded Poincaré series associated to Λ [ ρ / r ] . As an application, we determine the homotopy types of the Frobenius complexes of some additive monoids. For example, we show that if Λ is generated by a finite geometric sequence, then any Frobenius complex of Λ is homotopy equivalent to a wedge of spheres.
ISSN:0218-0006
0219-3094
DOI:10.1007/s00026-017-0353-1