On the coupling between precipitation and potential evapotranspiration: contributions to decadal drought anomalies in the Southwest China

Under the exacerbation of climate change, climate extreme events, especially for drought, happened frequently and intensively across the globe with greater spatial differences. We used the Standardized Precipitation-Evapotranspiration Index computed from the routine meteorological observations at 26...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Climate dynamics 2017-06, Vol.48 (11-12), p.3779-3797
Hauptverfasser: Sun, Shanlei, Chen, Haishan, Ju, Weimin, Wang, Guojie, Sun, Ge, Huang, Jin, Ma, Hedi, Gao, Chujie, Hua, Wenjian, Yan, Guixia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Under the exacerbation of climate change, climate extreme events, especially for drought, happened frequently and intensively across the globe with greater spatial differences. We used the Standardized Precipitation-Evapotranspiration Index computed from the routine meteorological observations at 269 sites in Southwest China (SWC) to study the drought characteristics (e.g., extent, duration and intensity) and their decadal variations during 1971–2012. It was revealed that the drought, in responses to the coupling between decadal precipitation and potential evapotranspiration (PET) anomalies, differed among regions and periods. For the entire SWC, droughts in 1970s and 2000s+ was generally stronger than in 1980s and 1990s with respect to their spatial extent, duration and intensity, especially in 2000s+. It was well-known that drought was closely related with a lack of precipitation; however, the impact of atmospheric demand of evaporation (reflected by PET here) on drought (e.g., duration and intensity) was rarely paid enough attentions. To that end, a spatial multi-linear regression approach was proposed in this study for quantifying the contributions of decadal PET and precipitation variations to drought duration and intensity. We have found that the contributions of decadal PET anomalies to drought duration and intensity could exceed those of precipitation, e.g., during 1980s and 1990s in SWC. Additionally, despite the strongest droughts in 2000s+, it was suggested that PET could exert comparable impacts on drought anomalies as precipitation. All these findings implied that PET plays a critical role in drought event, which acts to amplify drought duration and intensity. To sum up, this study stressed the need for enough attentions for PET processes in drought studies.
ISSN:0930-7575
1432-0894
DOI:10.1007/s00382-016-3302-5