AB0087 Modelling Osteoarthritis in Vitro – Applicability of 3D Scaffold-Free Constructs

BackgroundBy 2020, osteoarthritis (OA) will be the fourth leading cause of world's most common disabilities as a result of an increasing life expectancy and an aging population. According to the world health organization (WHO), 9.6% of men and 18% of women aged 60 or older suffer from OA worldw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of the rheumatic diseases 2015-06, Vol.74 (Suppl 2), p.919-920
Hauptverfasser: Lang, A., Neuhaus, J., Barnewitz, D., Gaber, T., Ponomarev, I.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:BackgroundBy 2020, osteoarthritis (OA) will be the fourth leading cause of world's most common disabilities as a result of an increasing life expectancy and an aging population. According to the world health organization (WHO), 9.6% of men and 18% of women aged 60 or older suffer from OA worldwide. The main characteristics of OA are the complex interplay of inflammatory processes and cartilage degradation. To study underlying mechanism and new therapeutic approaches, small animal models are widely used whereas the applicability to the human is questionable. Therefore, during the last years different efforts have been made to effectively apply the three “Rs” – Reduction, Refinement and Replacement – in animal experimentation that have been stated by Russell & Burch in 1959.ObjectivesHowever, to our knowledge the already existing 3D cell models for OA research are limited to reflect the complex pathogenesis and inconvenient to handle. Based on our scaffold-free 3D cartilage transplant (SFCT) technology (fzmb GmbH), we generated an in vitro OA model that consists exclusively of chondrocytes and their metabolic products.MethodsSFCTs were generated using equine chondrocytes. SFCTs with diameters up to 1.5 cm and thickness between 1-3 mm were treated with IL-1β and TNFα to trigger inflammatory process that parallels arthritic conditions for 3 weeks or left untreated. The treated group of constructs was splitted and either directly fixed after stimulation or treated without stimulation for further 3 weeks in order to evaluate the regeneration potential. Quantitative PCR was performed to investigate an inflammatory and cartilage specific marker profile (IL-1β, TNFα, IL-6, IL-8, Cox-2, MMP-1, MMP-3, MMP-9, BMP-2, SOX-9, TGFβ1) that was normalized to the housekeeper genes (GAPDH, HRPT, SDHA) and standardized to the untreated controls.ResultsWe observed a significant increase of inflammatory marker expression (IL-1β, TNFα, IL-6, IL-8, Cox-2) and matrix degrading enzyme expression (MMP-1, MMP-3) on RNA level after stimulation with IL-1β and TNFα as compared to the untreated control which was reversible after 3 weeks of regeneration. MMP-9 showed a negative regulation under stimulation. Additionally, BMP-2 showed an up-regulation under stimulation whereas TGFβ1 showed no changes. Furthermore, the down-regulation of SOX-9 indicates phenotypical changes of chondrocytes that were confirmed in preliminary histological investigations.ConclusionsThe results from our 3D in vi
ISSN:0003-4967
1468-2060
DOI:10.1136/annrheumdis-2015-eular.3460