Quality of the Cut Surfaces Processed by AWJC as a Function of the Distance between the Cutting Head and Working Sample

Water jet cutting is one of the newest techniques in non-conventional machining processes. It is a flexible technology since the same equipment can be used to cut virtually any material, such as steel stainless steel, high-nickel alloys and polymer composites (usually, for these materials, the water...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2015-11, Vol.809-810, p.207-212
Hauptverfasser: Radu, Maria Crina, Herghelegiu, Eugen, Schnakovszky, Carol, Zichil, Valentin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Water jet cutting is one of the newest techniques in non-conventional machining processes. It is a flexible technology since the same equipment can be used to cut virtually any material, such as steel stainless steel, high-nickel alloys and polymer composites (usually, for these materials, the water jet is mixed with an abrasive material, the process being known as abrasive water jet cutting - AWJC) . Compared with the classical technologies, water jet cutting presents the following advantages: very low side forces during machining, it is rapid, it is silent, no thermal distortion, a good cutting accuracy and minimal burrs. To optimize the process, it is necessary to analyze the influence of process parameters on the quality of cut. The aim of this paper is to analyze the influence of distance between the cutting head and the working sample on the quality of cut, quantified by the following parameters: width of the processed surface at the jet inlet, jet outlet, deviation from perpendicularity, inclination angle and roughness.
ISSN:1660-9336
1662-7482
1662-7482
DOI:10.4028/www.scientific.net/AMM.809-810.207