Healing simulation for bond strength prediction of FDM

Purpose The purpose of this paper is to present a diffusion-controlled healing model for predicting fused deposition modeling (FDM) bond strength between layers (z-axis strength). Design/methodology/approach Diffusion across layers of an FDM part was predicted based on a one-dimensional transient he...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rapid prototyping journal 2017-01, Vol.23 (3), p.551-561
Hauptverfasser: Coogan, Timothy J, Kazmer, David O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose The purpose of this paper is to present a diffusion-controlled healing model for predicting fused deposition modeling (FDM) bond strength between layers (z-axis strength). Design/methodology/approach Diffusion across layers of an FDM part was predicted based on a one-dimensional transient heat analysis of the interlayer interface using a temperature-dependent diffusion model determined from rheological data. Integrating the diffusion coefficient across the temperature history with respect to time provided the total diffusion used to predict the bond strength, which was compared to the measured bond strength of hollow acrylonitrile butadiene styr (ABS) boxes printed at various processing conditions. Findings The simulated bond strengths predicted the measured bond strengths with a coefficient of determination of 0.795. The total diffusion between FDM layers was shown to be a strong determinant of bond strength and can be similarly applied for other materials. Research limitations/implications Results and analysis from this paper should be used to accurately model and predict bond strength. Such models are useful for FDM part design and process control. Originality/value This paper is the first work that has predicted the amount of polymer diffusion that occurs across FDM layers during the printing process, using only rheological material properties and processing parameters.
ISSN:1355-2546
1758-7670
DOI:10.1108/RPJ-03-2016-0051