Matrix Models and A Proof of the Open Analog of Witten’s Conjecture

In a recent work, R. Pandharipande, J. P. Solomon and the second author have initiated a study of the intersection theory on the moduli space of Riemann surfaces with boundary. They conjectured that the generating series of the intersection numbers satisfies the open KdV equations. In this paper we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2017-08, Vol.353 (3), p.1299-1328
Hauptverfasser: Buryak, Alexandr, Tessler, Ran J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In a recent work, R. Pandharipande, J. P. Solomon and the second author have initiated a study of the intersection theory on the moduli space of Riemann surfaces with boundary. They conjectured that the generating series of the intersection numbers satisfies the open KdV equations. In this paper we prove this conjecture. Our proof goes through a matrix model and is based on a Kontsevich type combinatorial formula for the intersection numbers that was found by the second author.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-017-2899-5