Building an Urban Spatial Structure from Urban Land Use Data: An Example Using Automated Recognition of the City Centre

It has been suggested that the method of constructing an urban spatial structure typically follows a forward process from planning and design up to expression, as reflected in both graphic and text descriptions of urban planning. Although unorthodox, the original status structures can be extracted a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISPRS international journal of geo-information 2017-04, Vol.6 (4), p.122
Hauptverfasser: Zhu, Jie, Sun, Yizhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It has been suggested that the method of constructing an urban spatial structure typically follows a forward process from planning and design up to expression, as reflected in both graphic and text descriptions of urban planning. Although unorthodox, the original status structures can be extracted and constructed from an existing urban land-use map. This approach not only provides the methodological foundation for urban spatial structure evolution and allows for a comparative and quantitative analysis between the existing and planned conditions, but also lays a theoretical basis for failure in scientific decision making during the planning phase. This study attempts to achieve this by identifying the city centre (a typical element of the urban spatial structure) from urban land use data. The city centre is a special region consisting of several units with particular spatial information, including geometric attributes, topological attributes, and thematic attributes. In this paper, we develop a methodology to support the delineation of the city centre, considering these factors. First, using commercial land data, we characterise the city centre as units based on a series of indicators, including geometric and thematic attributes, and integrate them into a composite index of “urban centrality”; Second, a graph-based spatial clustering method that considers both topological proximity and attribute similarity is designed and used to identify the city centre. The precise boundary of the city centre is subsequently delimited using a shape reconstruction method based on the cluster results. Finally, we present a case study to demonstrate the effectiveness and practicability of the methodology.
ISSN:2220-9964
2220-9964
DOI:10.3390/ijgi6040122