Compound Riemann Hilbert Boundary Value Problems in Complex and Quaternionic Analysis

The aim of this paper is the study of a class of compound boundary value problems for the homogeneous Dirac equation in two and three dimensions where one of the two boundary conditions (linear conjugation) is loaded. It is shown how the lack of commutativity inherent in the quaternionic product, pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied Clifford algebras 2017-06, Vol.27 (2), p.977-991
Hauptverfasser: Bory Reyes, Juan, Tamayo Castro, Carlos Daniel, Blaya, Ricardo Abreu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this paper is the study of a class of compound boundary value problems for the homogeneous Dirac equation in two and three dimensions where one of the two boundary conditions (linear conjugation) is loaded. It is shown how the lack of commutativity inherent in the quaternionic product, paradoxically relaxes the conditions to guarantee the solvability of considered problems. Some examples illustrating the results are presented.
ISSN:0188-7009
1661-4909
DOI:10.1007/s00006-016-0710-x