Environmental Benign Synthesis of Lithium Silicates and Mg-Al Layered Double Hydroxide from Vermiculite Mineral for CO2 Capture

This research introduces a completely new environmental benign synthesis route for obtaining two kinds of inter-mediate and high temperature CO2 sorbents, Mg-Al layered double hydroxide (LDH) and Li4SiO4, from vermiculite. The mineral vermiculite was leached with acid, from which the obtained SiO2 w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysts 2017-04, Vol.7 (12), p.105
Hauptverfasser: Zhang, Yu, Zhou, Tuantuan, Louis, Benoit, Yu, Feng, Dan, Jianming, Wang, Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This research introduces a completely new environmental benign synthesis route for obtaining two kinds of inter-mediate and high temperature CO2 sorbents, Mg-Al layered double hydroxide (LDH) and Li4SiO4, from vermiculite. The mineral vermiculite was leached with acid, from which the obtained SiO2 was used for the synthesis of Li4SiO4 and the leaching waste water was used for the synthesis of Mg-Al LDH. Therefore, no waste was produced during the whole process. Both Li4SiO4 and Mg-Al LDH sorbents were carefully characterized using XRD, SEM, and BET analyses. The CO2 capturing performance of these two sorbents was comprehensively evaluated. The influence of the Li/Si ratio, calcination temperature, calcination time, and sorption temperature on the CO2 sorption capacity of Li4SiO4, and the sorption temperature on the CO2 sorption capacity of LDH, were investigated. The optimal leaching acid concentration for vermiculite and the CO2 sorption/desorption cycling performance of both the Li4SiO4 and Mg-Al LDH sorbents were determined. In sum, this demonstrated a unique and environment-friendly scheme for obtaining two CO2 sorbents from cheap raw materials, and this idea is applicable to the efficient utilization of other minerals.
ISSN:2073-4344
2073-4344
DOI:10.3390/catal7040105