On toric locally conformally Kähler manifolds

We study compact toric strict locally conformally Kähler manifolds. We show that the Kodaira dimension of the underlying complex manifold is - ∞ , and that the only compact complex surfaces admitting toric strict locally conformally Kähler metrics are the diagonal Hopf surfaces. We also show that ev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of global analysis and geometry 2017-06, Vol.51 (4), p.401-417
Hauptverfasser: Madani, Farid, Moroianu, Andrei, Pilca, Mihaela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 417
container_issue 4
container_start_page 401
container_title Annals of global analysis and geometry
container_volume 51
creator Madani, Farid
Moroianu, Andrei
Pilca, Mihaela
description We study compact toric strict locally conformally Kähler manifolds. We show that the Kodaira dimension of the underlying complex manifold is - ∞ , and that the only compact complex surfaces admitting toric strict locally conformally Kähler metrics are the diagonal Hopf surfaces. We also show that every toric Vaisman manifold has lcK rank 1 and is isomorphic to the mapping torus of an automorphism of a toric compact Sasakian manifold.
doi_str_mv 10.1007/s10455-017-9545-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1899786670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899786670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-fff4e892b1e50fd1e458d611643c15e17bb12328084bb8fb7122ff4304d56f993</originalsourceid><addsrcrecordid>eNp1kLtOAzEQRS0EEiHwAXQrUTvMeP0sUcRLREoDEp21Dxs22qyDnRT5H_6EH8NhKWioZop77owOIZcIMwRQ1wmBC0EBFTWCCyqOyASFYtSAhGMyAVYyqoC_npKzlFYAIErECZkth2IbYtcUfWiqvt8XTRh8iOuf_enr8713sVhXQ-dD36ZzcuKrPrmL3zklL3e3z_MHuljeP85vFrQpUW6p9547bViNToBv0XGhW4koedmgcKjqGvNDGjSva-1rhYxlpATeCumNKafkauzdxPCxc2lrV2EXh3zSojZGaSkV5BSOqSaGlKLzdhO7dRX3FsEetNhRi81a7EGLFZlhI5Nydnhz8U_zv9A3l01kPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899786670</pqid></control><display><type>article</type><title>On toric locally conformally Kähler manifolds</title><source>SpringerLink Journals - AutoHoldings</source><creator>Madani, Farid ; Moroianu, Andrei ; Pilca, Mihaela</creator><creatorcontrib>Madani, Farid ; Moroianu, Andrei ; Pilca, Mihaela</creatorcontrib><description>We study compact toric strict locally conformally Kähler manifolds. We show that the Kodaira dimension of the underlying complex manifold is - ∞ , and that the only compact complex surfaces admitting toric strict locally conformally Kähler metrics are the diagonal Hopf surfaces. We also show that every toric Vaisman manifold has lcK rank 1 and is isomorphic to the mapping torus of an automorphism of a toric compact Sasakian manifold.</description><identifier>ISSN: 0232-704X</identifier><identifier>EISSN: 1572-9060</identifier><identifier>DOI: 10.1007/s10455-017-9545-5</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Analysis ; Differential Geometry ; Geometry ; Global Analysis and Analysis on Manifolds ; Manifolds (mathematics) ; Mathematical Physics ; Mathematics ; Mathematics and Statistics ; Toruses</subject><ispartof>Annals of global analysis and geometry, 2017-06, Vol.51 (4), p.401-417</ispartof><rights>Springer Science+Business Media Dordrecht 2017</rights><rights>Annals of Global Analysis and Geometry is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-fff4e892b1e50fd1e458d611643c15e17bb12328084bb8fb7122ff4304d56f993</citedby><cites>FETCH-LOGICAL-c316t-fff4e892b1e50fd1e458d611643c15e17bb12328084bb8fb7122ff4304d56f993</cites><orcidid>0000-0002-9799-1036</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10455-017-9545-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10455-017-9545-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Madani, Farid</creatorcontrib><creatorcontrib>Moroianu, Andrei</creatorcontrib><creatorcontrib>Pilca, Mihaela</creatorcontrib><title>On toric locally conformally Kähler manifolds</title><title>Annals of global analysis and geometry</title><addtitle>Ann Glob Anal Geom</addtitle><description>We study compact toric strict locally conformally Kähler manifolds. We show that the Kodaira dimension of the underlying complex manifold is - ∞ , and that the only compact complex surfaces admitting toric strict locally conformally Kähler metrics are the diagonal Hopf surfaces. We also show that every toric Vaisman manifold has lcK rank 1 and is isomorphic to the mapping torus of an automorphism of a toric compact Sasakian manifold.</description><subject>Analysis</subject><subject>Differential Geometry</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Manifolds (mathematics)</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Toruses</subject><issn>0232-704X</issn><issn>1572-9060</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kLtOAzEQRS0EEiHwAXQrUTvMeP0sUcRLREoDEp21Dxs22qyDnRT5H_6EH8NhKWioZop77owOIZcIMwRQ1wmBC0EBFTWCCyqOyASFYtSAhGMyAVYyqoC_npKzlFYAIErECZkth2IbYtcUfWiqvt8XTRh8iOuf_enr8713sVhXQ-dD36ZzcuKrPrmL3zklL3e3z_MHuljeP85vFrQpUW6p9547bViNToBv0XGhW4koedmgcKjqGvNDGjSva-1rhYxlpATeCumNKafkauzdxPCxc2lrV2EXh3zSojZGaSkV5BSOqSaGlKLzdhO7dRX3FsEetNhRi81a7EGLFZlhI5Nydnhz8U_zv9A3l01kPg</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Madani, Farid</creator><creator>Moroianu, Andrei</creator><creator>Pilca, Mihaela</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9799-1036</orcidid></search><sort><creationdate>20170601</creationdate><title>On toric locally conformally Kähler manifolds</title><author>Madani, Farid ; Moroianu, Andrei ; Pilca, Mihaela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-fff4e892b1e50fd1e458d611643c15e17bb12328084bb8fb7122ff4304d56f993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Differential Geometry</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Manifolds (mathematics)</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Toruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Madani, Farid</creatorcontrib><creatorcontrib>Moroianu, Andrei</creatorcontrib><creatorcontrib>Pilca, Mihaela</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of global analysis and geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Madani, Farid</au><au>Moroianu, Andrei</au><au>Pilca, Mihaela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On toric locally conformally Kähler manifolds</atitle><jtitle>Annals of global analysis and geometry</jtitle><stitle>Ann Glob Anal Geom</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>51</volume><issue>4</issue><spage>401</spage><epage>417</epage><pages>401-417</pages><issn>0232-704X</issn><eissn>1572-9060</eissn><abstract>We study compact toric strict locally conformally Kähler manifolds. We show that the Kodaira dimension of the underlying complex manifold is - ∞ , and that the only compact complex surfaces admitting toric strict locally conformally Kähler metrics are the diagonal Hopf surfaces. We also show that every toric Vaisman manifold has lcK rank 1 and is isomorphic to the mapping torus of an automorphism of a toric compact Sasakian manifold.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10455-017-9545-5</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9799-1036</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0232-704X
ispartof Annals of global analysis and geometry, 2017-06, Vol.51 (4), p.401-417
issn 0232-704X
1572-9060
language eng
recordid cdi_proquest_journals_1899786670
source SpringerLink Journals - AutoHoldings
subjects Analysis
Differential Geometry
Geometry
Global Analysis and Analysis on Manifolds
Manifolds (mathematics)
Mathematical Physics
Mathematics
Mathematics and Statistics
Toruses
title On toric locally conformally Kähler manifolds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A20%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20toric%20locally%20conformally%20K%C3%A4hler%20manifolds&rft.jtitle=Annals%20of%20global%20analysis%20and%20geometry&rft.au=Madani,%20Farid&rft.date=2017-06-01&rft.volume=51&rft.issue=4&rft.spage=401&rft.epage=417&rft.pages=401-417&rft.issn=0232-704X&rft.eissn=1572-9060&rft_id=info:doi/10.1007/s10455-017-9545-5&rft_dat=%3Cproquest_cross%3E1899786670%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899786670&rft_id=info:pmid/&rfr_iscdi=true