On toric locally conformally Kähler manifolds
We study compact toric strict locally conformally Kähler manifolds. We show that the Kodaira dimension of the underlying complex manifold is - ∞ , and that the only compact complex surfaces admitting toric strict locally conformally Kähler metrics are the diagonal Hopf surfaces. We also show that ev...
Gespeichert in:
Veröffentlicht in: | Annals of global analysis and geometry 2017-06, Vol.51 (4), p.401-417 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 417 |
---|---|
container_issue | 4 |
container_start_page | 401 |
container_title | Annals of global analysis and geometry |
container_volume | 51 |
creator | Madani, Farid Moroianu, Andrei Pilca, Mihaela |
description | We study compact toric strict locally conformally Kähler manifolds. We show that the Kodaira dimension of the underlying complex manifold is
-
∞
, and that the only compact complex surfaces admitting toric strict locally conformally Kähler metrics are the diagonal Hopf surfaces. We also show that every toric Vaisman manifold has lcK rank 1 and is isomorphic to the mapping torus of an automorphism of a toric compact Sasakian manifold. |
doi_str_mv | 10.1007/s10455-017-9545-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1899786670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899786670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-fff4e892b1e50fd1e458d611643c15e17bb12328084bb8fb7122ff4304d56f993</originalsourceid><addsrcrecordid>eNp1kLtOAzEQRS0EEiHwAXQrUTvMeP0sUcRLREoDEp21Dxs22qyDnRT5H_6EH8NhKWioZop77owOIZcIMwRQ1wmBC0EBFTWCCyqOyASFYtSAhGMyAVYyqoC_npKzlFYAIErECZkth2IbYtcUfWiqvt8XTRh8iOuf_enr8713sVhXQ-dD36ZzcuKrPrmL3zklL3e3z_MHuljeP85vFrQpUW6p9547bViNToBv0XGhW4koedmgcKjqGvNDGjSva-1rhYxlpATeCumNKafkauzdxPCxc2lrV2EXh3zSojZGaSkV5BSOqSaGlKLzdhO7dRX3FsEetNhRi81a7EGLFZlhI5Nydnhz8U_zv9A3l01kPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899786670</pqid></control><display><type>article</type><title>On toric locally conformally Kähler manifolds</title><source>SpringerLink Journals - AutoHoldings</source><creator>Madani, Farid ; Moroianu, Andrei ; Pilca, Mihaela</creator><creatorcontrib>Madani, Farid ; Moroianu, Andrei ; Pilca, Mihaela</creatorcontrib><description>We study compact toric strict locally conformally Kähler manifolds. We show that the Kodaira dimension of the underlying complex manifold is
-
∞
, and that the only compact complex surfaces admitting toric strict locally conformally Kähler metrics are the diagonal Hopf surfaces. We also show that every toric Vaisman manifold has lcK rank 1 and is isomorphic to the mapping torus of an automorphism of a toric compact Sasakian manifold.</description><identifier>ISSN: 0232-704X</identifier><identifier>EISSN: 1572-9060</identifier><identifier>DOI: 10.1007/s10455-017-9545-5</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Analysis ; Differential Geometry ; Geometry ; Global Analysis and Analysis on Manifolds ; Manifolds (mathematics) ; Mathematical Physics ; Mathematics ; Mathematics and Statistics ; Toruses</subject><ispartof>Annals of global analysis and geometry, 2017-06, Vol.51 (4), p.401-417</ispartof><rights>Springer Science+Business Media Dordrecht 2017</rights><rights>Annals of Global Analysis and Geometry is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-fff4e892b1e50fd1e458d611643c15e17bb12328084bb8fb7122ff4304d56f993</citedby><cites>FETCH-LOGICAL-c316t-fff4e892b1e50fd1e458d611643c15e17bb12328084bb8fb7122ff4304d56f993</cites><orcidid>0000-0002-9799-1036</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10455-017-9545-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10455-017-9545-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Madani, Farid</creatorcontrib><creatorcontrib>Moroianu, Andrei</creatorcontrib><creatorcontrib>Pilca, Mihaela</creatorcontrib><title>On toric locally conformally Kähler manifolds</title><title>Annals of global analysis and geometry</title><addtitle>Ann Glob Anal Geom</addtitle><description>We study compact toric strict locally conformally Kähler manifolds. We show that the Kodaira dimension of the underlying complex manifold is
-
∞
, and that the only compact complex surfaces admitting toric strict locally conformally Kähler metrics are the diagonal Hopf surfaces. We also show that every toric Vaisman manifold has lcK rank 1 and is isomorphic to the mapping torus of an automorphism of a toric compact Sasakian manifold.</description><subject>Analysis</subject><subject>Differential Geometry</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Manifolds (mathematics)</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Toruses</subject><issn>0232-704X</issn><issn>1572-9060</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kLtOAzEQRS0EEiHwAXQrUTvMeP0sUcRLREoDEp21Dxs22qyDnRT5H_6EH8NhKWioZop77owOIZcIMwRQ1wmBC0EBFTWCCyqOyASFYtSAhGMyAVYyqoC_npKzlFYAIErECZkth2IbYtcUfWiqvt8XTRh8iOuf_enr8713sVhXQ-dD36ZzcuKrPrmL3zklL3e3z_MHuljeP85vFrQpUW6p9547bViNToBv0XGhW4koedmgcKjqGvNDGjSva-1rhYxlpATeCumNKafkauzdxPCxc2lrV2EXh3zSojZGaSkV5BSOqSaGlKLzdhO7dRX3FsEetNhRi81a7EGLFZlhI5Nydnhz8U_zv9A3l01kPg</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Madani, Farid</creator><creator>Moroianu, Andrei</creator><creator>Pilca, Mihaela</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9799-1036</orcidid></search><sort><creationdate>20170601</creationdate><title>On toric locally conformally Kähler manifolds</title><author>Madani, Farid ; Moroianu, Andrei ; Pilca, Mihaela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-fff4e892b1e50fd1e458d611643c15e17bb12328084bb8fb7122ff4304d56f993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Differential Geometry</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Manifolds (mathematics)</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Toruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Madani, Farid</creatorcontrib><creatorcontrib>Moroianu, Andrei</creatorcontrib><creatorcontrib>Pilca, Mihaela</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of global analysis and geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Madani, Farid</au><au>Moroianu, Andrei</au><au>Pilca, Mihaela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On toric locally conformally Kähler manifolds</atitle><jtitle>Annals of global analysis and geometry</jtitle><stitle>Ann Glob Anal Geom</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>51</volume><issue>4</issue><spage>401</spage><epage>417</epage><pages>401-417</pages><issn>0232-704X</issn><eissn>1572-9060</eissn><abstract>We study compact toric strict locally conformally Kähler manifolds. We show that the Kodaira dimension of the underlying complex manifold is
-
∞
, and that the only compact complex surfaces admitting toric strict locally conformally Kähler metrics are the diagonal Hopf surfaces. We also show that every toric Vaisman manifold has lcK rank 1 and is isomorphic to the mapping torus of an automorphism of a toric compact Sasakian manifold.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10455-017-9545-5</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9799-1036</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0232-704X |
ispartof | Annals of global analysis and geometry, 2017-06, Vol.51 (4), p.401-417 |
issn | 0232-704X 1572-9060 |
language | eng |
recordid | cdi_proquest_journals_1899786670 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis Differential Geometry Geometry Global Analysis and Analysis on Manifolds Manifolds (mathematics) Mathematical Physics Mathematics Mathematics and Statistics Toruses |
title | On toric locally conformally Kähler manifolds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A20%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20toric%20locally%20conformally%20K%C3%A4hler%20manifolds&rft.jtitle=Annals%20of%20global%20analysis%20and%20geometry&rft.au=Madani,%20Farid&rft.date=2017-06-01&rft.volume=51&rft.issue=4&rft.spage=401&rft.epage=417&rft.pages=401-417&rft.issn=0232-704X&rft.eissn=1572-9060&rft_id=info:doi/10.1007/s10455-017-9545-5&rft_dat=%3Cproquest_cross%3E1899786670%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899786670&rft_id=info:pmid/&rfr_iscdi=true |