On toric locally conformally Kähler manifolds

We study compact toric strict locally conformally Kähler manifolds. We show that the Kodaira dimension of the underlying complex manifold is - ∞ , and that the only compact complex surfaces admitting toric strict locally conformally Kähler metrics are the diagonal Hopf surfaces. We also show that ev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of global analysis and geometry 2017-06, Vol.51 (4), p.401-417
Hauptverfasser: Madani, Farid, Moroianu, Andrei, Pilca, Mihaela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study compact toric strict locally conformally Kähler manifolds. We show that the Kodaira dimension of the underlying complex manifold is - ∞ , and that the only compact complex surfaces admitting toric strict locally conformally Kähler metrics are the diagonal Hopf surfaces. We also show that every toric Vaisman manifold has lcK rank 1 and is isomorphic to the mapping torus of an automorphism of a toric compact Sasakian manifold.
ISSN:0232-704X
1572-9060
DOI:10.1007/s10455-017-9545-5