On toric locally conformally Kähler manifolds
We study compact toric strict locally conformally Kähler manifolds. We show that the Kodaira dimension of the underlying complex manifold is - ∞ , and that the only compact complex surfaces admitting toric strict locally conformally Kähler metrics are the diagonal Hopf surfaces. We also show that ev...
Gespeichert in:
Veröffentlicht in: | Annals of global analysis and geometry 2017-06, Vol.51 (4), p.401-417 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study compact toric strict locally conformally Kähler manifolds. We show that the Kodaira dimension of the underlying complex manifold is
-
∞
, and that the only compact complex surfaces admitting toric strict locally conformally Kähler metrics are the diagonal Hopf surfaces. We also show that every toric Vaisman manifold has lcK rank 1 and is isomorphic to the mapping torus of an automorphism of a toric compact Sasakian manifold. |
---|---|
ISSN: | 0232-704X 1572-9060 |
DOI: | 10.1007/s10455-017-9545-5 |