The Distribution of a Sum of Independent Binomial Random Variables
The distribution of a sum S of independent binomial random variables, each with different success probabilities, is discussed. An efficient algorithm is given to calculate the exact distribution by convolution. Two approximations are examined, one based on a method of Kolmogorov, and another based o...
Gespeichert in:
Veröffentlicht in: | Methodology and computing in applied probability 2017-06, Vol.19 (2), p.557-571 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 571 |
---|---|
container_issue | 2 |
container_start_page | 557 |
container_title | Methodology and computing in applied probability |
container_volume | 19 |
creator | Butler, Ken Stephens, Michael A. |
description | The distribution of a sum
S
of independent binomial random variables, each with different success probabilities, is discussed. An efficient algorithm is given to calculate the exact distribution by convolution. Two approximations are examined, one based on a method of Kolmogorov, and another based on fitting a distribution from the Pearson family. The Kolmogorov approximation is given as an algorithm, with a worked example. The Kolmogorov and Pearson approximations are compared for several given sets of binomials with different sample sizes and probabilities. Other methods of approximation are discussed and some compared numerically. The Kolmogorov approximation is found to be extremely accurate, and the Pearson curve approximation useful if extreme accuracy is not required. |
doi_str_mv | 10.1007/s11009-016-9533-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1899694716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899694716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-d0b1ade490d155bbad0b5a7a80d4bf320b1aaef4d48a983955116a3b5dcce6043</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIlMIHcLPE2eCt7Tg-0vKqVAkJClfLiR1w1TjFTg78PY7CgQuXndHuzKw0CF0CvQZK5U2CDIpQKIgSjBF-hGYgJCNSAjvOnJWSiJLDKTpLaUfpAgTjM7Tcfjp851MffTX0vgu4a7DBr0M7knWw7uDyCD1e-tC13uzxiwm2a_G7id5Ue5fO0Ulj9sld_OIcvT3cb1dPZPP8uF7dbkjNoOiJpRUY67iiFoSoKpMXwkhTUsurhi3Gs3ENt7w0qmRKCIDCsErYunYF5WyOrqbcQ-y-Bpd6veuGGPJLDaVSheISiqyCSVXHLqXoGn2IvjXxWwPVY1V6qkrnqvRYlR6TF5MnZW34cPFP8r-mH3WwazI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899694716</pqid></control><display><type>article</type><title>The Distribution of a Sum of Independent Binomial Random Variables</title><source>EBSCOhost Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Butler, Ken ; Stephens, Michael A.</creator><creatorcontrib>Butler, Ken ; Stephens, Michael A.</creatorcontrib><description>The distribution of a sum
S
of independent binomial random variables, each with different success probabilities, is discussed. An efficient algorithm is given to calculate the exact distribution by convolution. Two approximations are examined, one based on a method of Kolmogorov, and another based on fitting a distribution from the Pearson family. The Kolmogorov approximation is given as an algorithm, with a worked example. The Kolmogorov and Pearson approximations are compared for several given sets of binomials with different sample sizes and probabilities. Other methods of approximation are discussed and some compared numerically. The Kolmogorov approximation is found to be extremely accurate, and the Pearson curve approximation useful if extreme accuracy is not required.</description><identifier>ISSN: 1387-5841</identifier><identifier>EISSN: 1573-7713</identifier><identifier>DOI: 10.1007/s11009-016-9533-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Approximation ; Binomial distribution ; Binomials ; Business and Management ; Convolution ; Economics ; Electrical Engineering ; Independent variables ; Life Sciences ; Mathematics and Statistics ; Probabilistic methods ; Random variables ; Statistics</subject><ispartof>Methodology and computing in applied probability, 2017-06, Vol.19 (2), p.557-571</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>Methodology and Computing in Applied Probability is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-d0b1ade490d155bbad0b5a7a80d4bf320b1aaef4d48a983955116a3b5dcce6043</citedby><cites>FETCH-LOGICAL-c316t-d0b1ade490d155bbad0b5a7a80d4bf320b1aaef4d48a983955116a3b5dcce6043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11009-016-9533-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11009-016-9533-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Butler, Ken</creatorcontrib><creatorcontrib>Stephens, Michael A.</creatorcontrib><title>The Distribution of a Sum of Independent Binomial Random Variables</title><title>Methodology and computing in applied probability</title><addtitle>Methodol Comput Appl Probab</addtitle><description>The distribution of a sum
S
of independent binomial random variables, each with different success probabilities, is discussed. An efficient algorithm is given to calculate the exact distribution by convolution. Two approximations are examined, one based on a method of Kolmogorov, and another based on fitting a distribution from the Pearson family. The Kolmogorov approximation is given as an algorithm, with a worked example. The Kolmogorov and Pearson approximations are compared for several given sets of binomials with different sample sizes and probabilities. Other methods of approximation are discussed and some compared numerically. The Kolmogorov approximation is found to be extremely accurate, and the Pearson curve approximation useful if extreme accuracy is not required.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Binomial distribution</subject><subject>Binomials</subject><subject>Business and Management</subject><subject>Convolution</subject><subject>Economics</subject><subject>Electrical Engineering</subject><subject>Independent variables</subject><subject>Life Sciences</subject><subject>Mathematics and Statistics</subject><subject>Probabilistic methods</subject><subject>Random variables</subject><subject>Statistics</subject><issn>1387-5841</issn><issn>1573-7713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UMtOwzAQtBBIlMIHcLPE2eCt7Tg-0vKqVAkJClfLiR1w1TjFTg78PY7CgQuXndHuzKw0CF0CvQZK5U2CDIpQKIgSjBF-hGYgJCNSAjvOnJWSiJLDKTpLaUfpAgTjM7Tcfjp851MffTX0vgu4a7DBr0M7knWw7uDyCD1e-tC13uzxiwm2a_G7id5Ue5fO0Ulj9sld_OIcvT3cb1dPZPP8uF7dbkjNoOiJpRUY67iiFoSoKpMXwkhTUsurhi3Gs3ENt7w0qmRKCIDCsErYunYF5WyOrqbcQ-y-Bpd6veuGGPJLDaVSheISiqyCSVXHLqXoGn2IvjXxWwPVY1V6qkrnqvRYlR6TF5MnZW34cPFP8r-mH3WwazI</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Butler, Ken</creator><creator>Stephens, Michael A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20170601</creationdate><title>The Distribution of a Sum of Independent Binomial Random Variables</title><author>Butler, Ken ; Stephens, Michael A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-d0b1ade490d155bbad0b5a7a80d4bf320b1aaef4d48a983955116a3b5dcce6043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Binomial distribution</topic><topic>Binomials</topic><topic>Business and Management</topic><topic>Convolution</topic><topic>Economics</topic><topic>Electrical Engineering</topic><topic>Independent variables</topic><topic>Life Sciences</topic><topic>Mathematics and Statistics</topic><topic>Probabilistic methods</topic><topic>Random variables</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Butler, Ken</creatorcontrib><creatorcontrib>Stephens, Michael A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Methodology and computing in applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Butler, Ken</au><au>Stephens, Michael A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Distribution of a Sum of Independent Binomial Random Variables</atitle><jtitle>Methodology and computing in applied probability</jtitle><stitle>Methodol Comput Appl Probab</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>19</volume><issue>2</issue><spage>557</spage><epage>571</epage><pages>557-571</pages><issn>1387-5841</issn><eissn>1573-7713</eissn><abstract>The distribution of a sum
S
of independent binomial random variables, each with different success probabilities, is discussed. An efficient algorithm is given to calculate the exact distribution by convolution. Two approximations are examined, one based on a method of Kolmogorov, and another based on fitting a distribution from the Pearson family. The Kolmogorov approximation is given as an algorithm, with a worked example. The Kolmogorov and Pearson approximations are compared for several given sets of binomials with different sample sizes and probabilities. Other methods of approximation are discussed and some compared numerically. The Kolmogorov approximation is found to be extremely accurate, and the Pearson curve approximation useful if extreme accuracy is not required.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11009-016-9533-4</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1387-5841 |
ispartof | Methodology and computing in applied probability, 2017-06, Vol.19 (2), p.557-571 |
issn | 1387-5841 1573-7713 |
language | eng |
recordid | cdi_proquest_journals_1899694716 |
source | EBSCOhost Business Source Complete; SpringerLink Journals - AutoHoldings |
subjects | Algorithms Approximation Binomial distribution Binomials Business and Management Convolution Economics Electrical Engineering Independent variables Life Sciences Mathematics and Statistics Probabilistic methods Random variables Statistics |
title | The Distribution of a Sum of Independent Binomial Random Variables |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A36%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Distribution%20of%20a%20Sum%20of%20Independent%20Binomial%20Random%20Variables&rft.jtitle=Methodology%20and%20computing%20in%20applied%20probability&rft.au=Butler,%20Ken&rft.date=2017-06-01&rft.volume=19&rft.issue=2&rft.spage=557&rft.epage=571&rft.pages=557-571&rft.issn=1387-5841&rft.eissn=1573-7713&rft_id=info:doi/10.1007/s11009-016-9533-4&rft_dat=%3Cproquest_cross%3E1899694716%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899694716&rft_id=info:pmid/&rfr_iscdi=true |