The Distribution of a Sum of Independent Binomial Random Variables

The distribution of a sum S of independent binomial random variables, each with different success probabilities, is discussed. An efficient algorithm is given to calculate the exact distribution by convolution. Two approximations are examined, one based on a method of Kolmogorov, and another based o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methodology and computing in applied probability 2017-06, Vol.19 (2), p.557-571
Hauptverfasser: Butler, Ken, Stephens, Michael A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 571
container_issue 2
container_start_page 557
container_title Methodology and computing in applied probability
container_volume 19
creator Butler, Ken
Stephens, Michael A.
description The distribution of a sum S of independent binomial random variables, each with different success probabilities, is discussed. An efficient algorithm is given to calculate the exact distribution by convolution. Two approximations are examined, one based on a method of Kolmogorov, and another based on fitting a distribution from the Pearson family. The Kolmogorov approximation is given as an algorithm, with a worked example. The Kolmogorov and Pearson approximations are compared for several given sets of binomials with different sample sizes and probabilities. Other methods of approximation are discussed and some compared numerically. The Kolmogorov approximation is found to be extremely accurate, and the Pearson curve approximation useful if extreme accuracy is not required.
doi_str_mv 10.1007/s11009-016-9533-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1899694716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899694716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-d0b1ade490d155bbad0b5a7a80d4bf320b1aaef4d48a983955116a3b5dcce6043</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIlMIHcLPE2eCt7Tg-0vKqVAkJClfLiR1w1TjFTg78PY7CgQuXndHuzKw0CF0CvQZK5U2CDIpQKIgSjBF-hGYgJCNSAjvOnJWSiJLDKTpLaUfpAgTjM7Tcfjp851MffTX0vgu4a7DBr0M7knWw7uDyCD1e-tC13uzxiwm2a_G7id5Ue5fO0Ulj9sld_OIcvT3cb1dPZPP8uF7dbkjNoOiJpRUY67iiFoSoKpMXwkhTUsurhi3Gs3ENt7w0qmRKCIDCsErYunYF5WyOrqbcQ-y-Bpd6veuGGPJLDaVSheISiqyCSVXHLqXoGn2IvjXxWwPVY1V6qkrnqvRYlR6TF5MnZW34cPFP8r-mH3WwazI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899694716</pqid></control><display><type>article</type><title>The Distribution of a Sum of Independent Binomial Random Variables</title><source>EBSCOhost Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Butler, Ken ; Stephens, Michael A.</creator><creatorcontrib>Butler, Ken ; Stephens, Michael A.</creatorcontrib><description>The distribution of a sum S of independent binomial random variables, each with different success probabilities, is discussed. An efficient algorithm is given to calculate the exact distribution by convolution. Two approximations are examined, one based on a method of Kolmogorov, and another based on fitting a distribution from the Pearson family. The Kolmogorov approximation is given as an algorithm, with a worked example. The Kolmogorov and Pearson approximations are compared for several given sets of binomials with different sample sizes and probabilities. Other methods of approximation are discussed and some compared numerically. The Kolmogorov approximation is found to be extremely accurate, and the Pearson curve approximation useful if extreme accuracy is not required.</description><identifier>ISSN: 1387-5841</identifier><identifier>EISSN: 1573-7713</identifier><identifier>DOI: 10.1007/s11009-016-9533-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Approximation ; Binomial distribution ; Binomials ; Business and Management ; Convolution ; Economics ; Electrical Engineering ; Independent variables ; Life Sciences ; Mathematics and Statistics ; Probabilistic methods ; Random variables ; Statistics</subject><ispartof>Methodology and computing in applied probability, 2017-06, Vol.19 (2), p.557-571</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>Methodology and Computing in Applied Probability is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-d0b1ade490d155bbad0b5a7a80d4bf320b1aaef4d48a983955116a3b5dcce6043</citedby><cites>FETCH-LOGICAL-c316t-d0b1ade490d155bbad0b5a7a80d4bf320b1aaef4d48a983955116a3b5dcce6043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11009-016-9533-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11009-016-9533-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Butler, Ken</creatorcontrib><creatorcontrib>Stephens, Michael A.</creatorcontrib><title>The Distribution of a Sum of Independent Binomial Random Variables</title><title>Methodology and computing in applied probability</title><addtitle>Methodol Comput Appl Probab</addtitle><description>The distribution of a sum S of independent binomial random variables, each with different success probabilities, is discussed. An efficient algorithm is given to calculate the exact distribution by convolution. Two approximations are examined, one based on a method of Kolmogorov, and another based on fitting a distribution from the Pearson family. The Kolmogorov approximation is given as an algorithm, with a worked example. The Kolmogorov and Pearson approximations are compared for several given sets of binomials with different sample sizes and probabilities. Other methods of approximation are discussed and some compared numerically. The Kolmogorov approximation is found to be extremely accurate, and the Pearson curve approximation useful if extreme accuracy is not required.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Binomial distribution</subject><subject>Binomials</subject><subject>Business and Management</subject><subject>Convolution</subject><subject>Economics</subject><subject>Electrical Engineering</subject><subject>Independent variables</subject><subject>Life Sciences</subject><subject>Mathematics and Statistics</subject><subject>Probabilistic methods</subject><subject>Random variables</subject><subject>Statistics</subject><issn>1387-5841</issn><issn>1573-7713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UMtOwzAQtBBIlMIHcLPE2eCt7Tg-0vKqVAkJClfLiR1w1TjFTg78PY7CgQuXndHuzKw0CF0CvQZK5U2CDIpQKIgSjBF-hGYgJCNSAjvOnJWSiJLDKTpLaUfpAgTjM7Tcfjp851MffTX0vgu4a7DBr0M7knWw7uDyCD1e-tC13uzxiwm2a_G7id5Ue5fO0Ulj9sld_OIcvT3cb1dPZPP8uF7dbkjNoOiJpRUY67iiFoSoKpMXwkhTUsurhi3Gs3ENt7w0qmRKCIDCsErYunYF5WyOrqbcQ-y-Bpd6veuGGPJLDaVSheISiqyCSVXHLqXoGn2IvjXxWwPVY1V6qkrnqvRYlR6TF5MnZW34cPFP8r-mH3WwazI</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Butler, Ken</creator><creator>Stephens, Michael A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20170601</creationdate><title>The Distribution of a Sum of Independent Binomial Random Variables</title><author>Butler, Ken ; Stephens, Michael A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-d0b1ade490d155bbad0b5a7a80d4bf320b1aaef4d48a983955116a3b5dcce6043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Binomial distribution</topic><topic>Binomials</topic><topic>Business and Management</topic><topic>Convolution</topic><topic>Economics</topic><topic>Electrical Engineering</topic><topic>Independent variables</topic><topic>Life Sciences</topic><topic>Mathematics and Statistics</topic><topic>Probabilistic methods</topic><topic>Random variables</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Butler, Ken</creatorcontrib><creatorcontrib>Stephens, Michael A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Methodology and computing in applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Butler, Ken</au><au>Stephens, Michael A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Distribution of a Sum of Independent Binomial Random Variables</atitle><jtitle>Methodology and computing in applied probability</jtitle><stitle>Methodol Comput Appl Probab</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>19</volume><issue>2</issue><spage>557</spage><epage>571</epage><pages>557-571</pages><issn>1387-5841</issn><eissn>1573-7713</eissn><abstract>The distribution of a sum S of independent binomial random variables, each with different success probabilities, is discussed. An efficient algorithm is given to calculate the exact distribution by convolution. Two approximations are examined, one based on a method of Kolmogorov, and another based on fitting a distribution from the Pearson family. The Kolmogorov approximation is given as an algorithm, with a worked example. The Kolmogorov and Pearson approximations are compared for several given sets of binomials with different sample sizes and probabilities. Other methods of approximation are discussed and some compared numerically. The Kolmogorov approximation is found to be extremely accurate, and the Pearson curve approximation useful if extreme accuracy is not required.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11009-016-9533-4</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1387-5841
ispartof Methodology and computing in applied probability, 2017-06, Vol.19 (2), p.557-571
issn 1387-5841
1573-7713
language eng
recordid cdi_proquest_journals_1899694716
source EBSCOhost Business Source Complete; SpringerLink Journals - AutoHoldings
subjects Algorithms
Approximation
Binomial distribution
Binomials
Business and Management
Convolution
Economics
Electrical Engineering
Independent variables
Life Sciences
Mathematics and Statistics
Probabilistic methods
Random variables
Statistics
title The Distribution of a Sum of Independent Binomial Random Variables
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A36%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Distribution%20of%20a%20Sum%20of%20Independent%20Binomial%20Random%20Variables&rft.jtitle=Methodology%20and%20computing%20in%20applied%20probability&rft.au=Butler,%20Ken&rft.date=2017-06-01&rft.volume=19&rft.issue=2&rft.spage=557&rft.epage=571&rft.pages=557-571&rft.issn=1387-5841&rft.eissn=1573-7713&rft_id=info:doi/10.1007/s11009-016-9533-4&rft_dat=%3Cproquest_cross%3E1899694716%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899694716&rft_id=info:pmid/&rfr_iscdi=true