The Distribution of a Sum of Independent Binomial Random Variables

The distribution of a sum S of independent binomial random variables, each with different success probabilities, is discussed. An efficient algorithm is given to calculate the exact distribution by convolution. Two approximations are examined, one based on a method of Kolmogorov, and another based o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methodology and computing in applied probability 2017-06, Vol.19 (2), p.557-571
Hauptverfasser: Butler, Ken, Stephens, Michael A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The distribution of a sum S of independent binomial random variables, each with different success probabilities, is discussed. An efficient algorithm is given to calculate the exact distribution by convolution. Two approximations are examined, one based on a method of Kolmogorov, and another based on fitting a distribution from the Pearson family. The Kolmogorov approximation is given as an algorithm, with a worked example. The Kolmogorov and Pearson approximations are compared for several given sets of binomials with different sample sizes and probabilities. Other methods of approximation are discussed and some compared numerically. The Kolmogorov approximation is found to be extremely accurate, and the Pearson curve approximation useful if extreme accuracy is not required.
ISSN:1387-5841
1573-7713
DOI:10.1007/s11009-016-9533-4