Macroscopic traffic flow model calibration using different optimization algorithms

This study tests and compares different optimization algorithms employed for the calibration of a macroscopic traffic flow model. In particular, the deterministic Nelder–Mead algorithm, a stochastic genetic algorithm and the stochastic cross-entropy method are utilized to estimate the parameter valu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Operational research 2017-04, Vol.17 (1), p.145-164
Hauptverfasser: Spiliopoulou, Anastasia, Papamichail, Ioannis, Papageorgiou, Markos, Tyrinopoulos, Yannis, Chrysoulakis, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study tests and compares different optimization algorithms employed for the calibration of a macroscopic traffic flow model. In particular, the deterministic Nelder–Mead algorithm, a stochastic genetic algorithm and the stochastic cross-entropy method are utilized to estimate the parameter values of the METANET model for a particular freeway site, using real traffic data. The resulting models are validated using various traffic data sets and the optimization algorithms are evaluated and compared with respect to the accuracy of the produced validated models as well as the convergence speed and the required computation time. The validation results showed that all utilized optimization algorithms were able to converge to robust model parameter sets, albeit achieving different performances considering the convergence speed and the required computation time.
ISSN:1109-2858
1866-1505
DOI:10.1007/s12351-015-0219-4