Simultaneous dense and non-dense orbits for toral diffeomorphisms
We show that, for pairs of hyperbolic toral automorphisms on the $2$ -torus, the points with dense forward orbits under one map and non-dense forward orbits under the other is a dense, uncountable set. The pair of maps can be non-commuting. We also show the same for pairs of $C^{2}$ -Anosov diffeomo...
Gespeichert in:
Veröffentlicht in: | Ergodic theory and dynamical systems 2017-06, Vol.37 (4), p.1308-1322 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that, for pairs of hyperbolic toral automorphisms on the
$2$
-torus, the points with dense forward orbits under one map and non-dense forward orbits under the other is a dense, uncountable set. The pair of maps can be non-commuting. We also show the same for pairs of
$C^{2}$
-Anosov diffeomorphisms on the
$2$
-torus. (The pairs must satisfy slight constraints.) Our main tools are the Baire category theorem and a geometric construction that allows us to give a geometric characterization of the fractal that is the set of points with forward orbits that miss a certain open set. |
---|---|
ISSN: | 0143-3857 1469-4417 |
DOI: | 10.1017/etds.2015.80 |