Large eddy simulation of turbulent axially rotating pipe and swirling jet flows

Fully-developed, turbulent rotating pipe flow and swirling jet flow, emitted from the pipe, into open quiescent ambient are investigated numerically using large eddy simulation. Simulations are performed at various rotation rates and Reynolds numbers. Time-averaged large eddy simulation results are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science Journal of mechanical engineering science, 2017-05, Vol.231 (9), p.1749-1761
Hauptverfasser: Castro, Nicolas D, Demuren, Ayodeji O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1761
container_issue 9
container_start_page 1749
container_title Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science
container_volume 231
creator Castro, Nicolas D
Demuren, Ayodeji O
description Fully-developed, turbulent rotating pipe flow and swirling jet flow, emitted from the pipe, into open quiescent ambient are investigated numerically using large eddy simulation. Simulations are performed at various rotation rates and Reynolds numbers. Time-averaged large eddy simulation results are compared to experimental and simulation data from previous studies. Pipe flow results show deformation of the turbulent mean axial velocity profile towards the laminar-type Poiseuille profile, with increased rotation. The Reynolds stress anisotropy tensor experiences a component-level redistribution due to pipe rotation. Turbulent energy is transferred from the axial component to the tangential component as rotation is increased. The Reynolds stress anisotropy invariant map also shows a movement away from the one-component limit in the buffer layer, with increased rotation. Exit conditions for the pipe flow simulation are utilized as inlet conditions for the jet flow simulation. Jet flow without swirl and at a swirl rate of S = 0.5 are investigated. Swirl is observed to change the characteristics of the jet flow field, leading to increased jet spread and velocity decay, and a corresponding decrease in the length of the jet potential core. The Reynolds stress anisotropy invariant map shows that the turbulent stress field, with or without rotation straddles the axi-symmetric limit.
doi_str_mv 10.1177/0954406215620823
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1898547372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0954406215620823</sage_id><sourcerecordid>1898547372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-f0cdf1cfc437df0c05fcb0a2b9600b094f760c855f515f3a2d1a32d439638c733</originalsourceid><addsrcrecordid>eNp1UEtLxDAQDqLgunr3GPBcnbya9iiLL1jYi55LmsfSJdvUJGXdf2_LehDBuQwz3ws-hG4J3BMi5QPUgnMoKRElhYqyM7SgwElB64qdo8UMFzN-ia5S2sE0tBQLtFmruLXYGnPEqduPXuUu9Dg4nMfYjt72GauvTnl_xDHkCe23eOgGi1VvcDp00c-fnc3Y-XBI1-jCKZ_szc9eoo_np_fVa7HevLytHteFZlDnwoE2jminOZNmOkA43YKibV0CtFBzJ0vQlRBOEOGYooYoRg1ndckqLRlboruT7xDD52hTbnZhjP0U2ZCqrgSXTNKJBSeWjiGlaF0zxG6v4rEh0My1NX9rmyTFSZLU1v4y_Y__DZzubII</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898547372</pqid></control><display><type>article</type><title>Large eddy simulation of turbulent axially rotating pipe and swirling jet flows</title><source>SAGE Complete A-Z List</source><creator>Castro, Nicolas D ; Demuren, Ayodeji O</creator><creatorcontrib>Castro, Nicolas D ; Demuren, Ayodeji O</creatorcontrib><description>Fully-developed, turbulent rotating pipe flow and swirling jet flow, emitted from the pipe, into open quiescent ambient are investigated numerically using large eddy simulation. Simulations are performed at various rotation rates and Reynolds numbers. Time-averaged large eddy simulation results are compared to experimental and simulation data from previous studies. Pipe flow results show deformation of the turbulent mean axial velocity profile towards the laminar-type Poiseuille profile, with increased rotation. The Reynolds stress anisotropy tensor experiences a component-level redistribution due to pipe rotation. Turbulent energy is transferred from the axial component to the tangential component as rotation is increased. The Reynolds stress anisotropy invariant map also shows a movement away from the one-component limit in the buffer layer, with increased rotation. Exit conditions for the pipe flow simulation are utilized as inlet conditions for the jet flow simulation. Jet flow without swirl and at a swirl rate of S = 0.5 are investigated. Swirl is observed to change the characteristics of the jet flow field, leading to increased jet spread and velocity decay, and a corresponding decrease in the length of the jet potential core. The Reynolds stress anisotropy invariant map shows that the turbulent stress field, with or without rotation straddles the axi-symmetric limit.</description><identifier>ISSN: 0954-4062</identifier><identifier>EISSN: 2041-2983</identifier><identifier>DOI: 10.1177/0954406215620823</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Anisotropy ; Buffer layers ; Computational fluid dynamics ; Flow simulation ; Fluid flow ; Invariants ; Jet flow ; Large eddy simulation ; Mechanical engineering ; Pipe flow ; Reynolds number ; Reynolds stress ; Rotation ; Stress distribution ; Swirling ; Tensors ; Turbulent flow ; Velocity distribution ; Vortices</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science, 2017-05, Vol.231 (9), p.1749-1761</ispartof><rights>IMechE 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-f0cdf1cfc437df0c05fcb0a2b9600b094f760c855f515f3a2d1a32d439638c733</citedby><cites>FETCH-LOGICAL-c309t-f0cdf1cfc437df0c05fcb0a2b9600b094f760c855f515f3a2d1a32d439638c733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0954406215620823$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0954406215620823$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,778,782,21802,27907,27908,43604,43605</link.rule.ids></links><search><creatorcontrib>Castro, Nicolas D</creatorcontrib><creatorcontrib>Demuren, Ayodeji O</creatorcontrib><title>Large eddy simulation of turbulent axially rotating pipe and swirling jet flows</title><title>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</title><description>Fully-developed, turbulent rotating pipe flow and swirling jet flow, emitted from the pipe, into open quiescent ambient are investigated numerically using large eddy simulation. Simulations are performed at various rotation rates and Reynolds numbers. Time-averaged large eddy simulation results are compared to experimental and simulation data from previous studies. Pipe flow results show deformation of the turbulent mean axial velocity profile towards the laminar-type Poiseuille profile, with increased rotation. The Reynolds stress anisotropy tensor experiences a component-level redistribution due to pipe rotation. Turbulent energy is transferred from the axial component to the tangential component as rotation is increased. The Reynolds stress anisotropy invariant map also shows a movement away from the one-component limit in the buffer layer, with increased rotation. Exit conditions for the pipe flow simulation are utilized as inlet conditions for the jet flow simulation. Jet flow without swirl and at a swirl rate of S = 0.5 are investigated. Swirl is observed to change the characteristics of the jet flow field, leading to increased jet spread and velocity decay, and a corresponding decrease in the length of the jet potential core. The Reynolds stress anisotropy invariant map shows that the turbulent stress field, with or without rotation straddles the axi-symmetric limit.</description><subject>Anisotropy</subject><subject>Buffer layers</subject><subject>Computational fluid dynamics</subject><subject>Flow simulation</subject><subject>Fluid flow</subject><subject>Invariants</subject><subject>Jet flow</subject><subject>Large eddy simulation</subject><subject>Mechanical engineering</subject><subject>Pipe flow</subject><subject>Reynolds number</subject><subject>Reynolds stress</subject><subject>Rotation</subject><subject>Stress distribution</subject><subject>Swirling</subject><subject>Tensors</subject><subject>Turbulent flow</subject><subject>Velocity distribution</subject><subject>Vortices</subject><issn>0954-4062</issn><issn>2041-2983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLxDAQDqLgunr3GPBcnbya9iiLL1jYi55LmsfSJdvUJGXdf2_LehDBuQwz3ws-hG4J3BMi5QPUgnMoKRElhYqyM7SgwElB64qdo8UMFzN-ia5S2sE0tBQLtFmruLXYGnPEqduPXuUu9Dg4nMfYjt72GauvTnl_xDHkCe23eOgGi1VvcDp00c-fnc3Y-XBI1-jCKZ_szc9eoo_np_fVa7HevLytHteFZlDnwoE2jminOZNmOkA43YKibV0CtFBzJ0vQlRBOEOGYooYoRg1ndckqLRlboruT7xDD52hTbnZhjP0U2ZCqrgSXTNKJBSeWjiGlaF0zxG6v4rEh0My1NX9rmyTFSZLU1v4y_Y__DZzubII</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Castro, Nicolas D</creator><creator>Demuren, Ayodeji O</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201705</creationdate><title>Large eddy simulation of turbulent axially rotating pipe and swirling jet flows</title><author>Castro, Nicolas D ; Demuren, Ayodeji O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-f0cdf1cfc437df0c05fcb0a2b9600b094f760c855f515f3a2d1a32d439638c733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anisotropy</topic><topic>Buffer layers</topic><topic>Computational fluid dynamics</topic><topic>Flow simulation</topic><topic>Fluid flow</topic><topic>Invariants</topic><topic>Jet flow</topic><topic>Large eddy simulation</topic><topic>Mechanical engineering</topic><topic>Pipe flow</topic><topic>Reynolds number</topic><topic>Reynolds stress</topic><topic>Rotation</topic><topic>Stress distribution</topic><topic>Swirling</topic><topic>Tensors</topic><topic>Turbulent flow</topic><topic>Velocity distribution</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castro, Nicolas D</creatorcontrib><creatorcontrib>Demuren, Ayodeji O</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castro, Nicolas D</au><au>Demuren, Ayodeji O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large eddy simulation of turbulent axially rotating pipe and swirling jet flows</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</jtitle><date>2017-05</date><risdate>2017</risdate><volume>231</volume><issue>9</issue><spage>1749</spage><epage>1761</epage><pages>1749-1761</pages><issn>0954-4062</issn><eissn>2041-2983</eissn><abstract>Fully-developed, turbulent rotating pipe flow and swirling jet flow, emitted from the pipe, into open quiescent ambient are investigated numerically using large eddy simulation. Simulations are performed at various rotation rates and Reynolds numbers. Time-averaged large eddy simulation results are compared to experimental and simulation data from previous studies. Pipe flow results show deformation of the turbulent mean axial velocity profile towards the laminar-type Poiseuille profile, with increased rotation. The Reynolds stress anisotropy tensor experiences a component-level redistribution due to pipe rotation. Turbulent energy is transferred from the axial component to the tangential component as rotation is increased. The Reynolds stress anisotropy invariant map also shows a movement away from the one-component limit in the buffer layer, with increased rotation. Exit conditions for the pipe flow simulation are utilized as inlet conditions for the jet flow simulation. Jet flow without swirl and at a swirl rate of S = 0.5 are investigated. Swirl is observed to change the characteristics of the jet flow field, leading to increased jet spread and velocity decay, and a corresponding decrease in the length of the jet potential core. The Reynolds stress anisotropy invariant map shows that the turbulent stress field, with or without rotation straddles the axi-symmetric limit.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0954406215620823</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0954-4062
ispartof Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science, 2017-05, Vol.231 (9), p.1749-1761
issn 0954-4062
2041-2983
language eng
recordid cdi_proquest_journals_1898547372
source SAGE Complete A-Z List
subjects Anisotropy
Buffer layers
Computational fluid dynamics
Flow simulation
Fluid flow
Invariants
Jet flow
Large eddy simulation
Mechanical engineering
Pipe flow
Reynolds number
Reynolds stress
Rotation
Stress distribution
Swirling
Tensors
Turbulent flow
Velocity distribution
Vortices
title Large eddy simulation of turbulent axially rotating pipe and swirling jet flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A14%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20eddy%20simulation%20of%20turbulent%20axially%20rotating%20pipe%20and%20swirling%20jet%20flows&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20C,%20Journal%20of%20mechanical%20engineering%20science&rft.au=Castro,%20Nicolas%20D&rft.date=2017-05&rft.volume=231&rft.issue=9&rft.spage=1749&rft.epage=1761&rft.pages=1749-1761&rft.issn=0954-4062&rft.eissn=2041-2983&rft_id=info:doi/10.1177/0954406215620823&rft_dat=%3Cproquest_cross%3E1898547372%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898547372&rft_id=info:pmid/&rft_sage_id=10.1177_0954406215620823&rfr_iscdi=true