Large eddy simulation of turbulent axially rotating pipe and swirling jet flows

Fully-developed, turbulent rotating pipe flow and swirling jet flow, emitted from the pipe, into open quiescent ambient are investigated numerically using large eddy simulation. Simulations are performed at various rotation rates and Reynolds numbers. Time-averaged large eddy simulation results are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science Journal of mechanical engineering science, 2017-05, Vol.231 (9), p.1749-1761
Hauptverfasser: Castro, Nicolas D, Demuren, Ayodeji O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fully-developed, turbulent rotating pipe flow and swirling jet flow, emitted from the pipe, into open quiescent ambient are investigated numerically using large eddy simulation. Simulations are performed at various rotation rates and Reynolds numbers. Time-averaged large eddy simulation results are compared to experimental and simulation data from previous studies. Pipe flow results show deformation of the turbulent mean axial velocity profile towards the laminar-type Poiseuille profile, with increased rotation. The Reynolds stress anisotropy tensor experiences a component-level redistribution due to pipe rotation. Turbulent energy is transferred from the axial component to the tangential component as rotation is increased. The Reynolds stress anisotropy invariant map also shows a movement away from the one-component limit in the buffer layer, with increased rotation. Exit conditions for the pipe flow simulation are utilized as inlet conditions for the jet flow simulation. Jet flow without swirl and at a swirl rate of S = 0.5 are investigated. Swirl is observed to change the characteristics of the jet flow field, leading to increased jet spread and velocity decay, and a corresponding decrease in the length of the jet potential core. The Reynolds stress anisotropy invariant map shows that the turbulent stress field, with or without rotation straddles the axi-symmetric limit.
ISSN:0954-4062
2041-2983
DOI:10.1177/0954406215620823