Hyperboloidal Evolution and Global Dynamics for the Focusing Cubic Wave Equation

The focusing cubic wave equation in three spatial dimensions has the explicit solution 2 / t . We study the stability of the blowup described by this solution as t → 0 without symmetry restrictions on the data. Via the conformal invariance of the equation we obtain a companion result for the stabili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2017-07, Vol.353 (2), p.549-596
Hauptverfasser: Burtscher, Annegret Y., Donninger, Roland
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The focusing cubic wave equation in three spatial dimensions has the explicit solution 2 / t . We study the stability of the blowup described by this solution as t → 0 without symmetry restrictions on the data. Via the conformal invariance of the equation we obtain a companion result for the stability of slow decay in the framework of a hyperboloidal initial value formulation. More precisely, we identify a codimension-1 Lipschitz manifold of initial data leading to solutions that converge to Lorentz boosts of 2 / t as t → ∞ . These global solutions thus exhibit a slow nondispersive decay, in contrast to small data evolutions.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-017-2887-9