Hyperboloidal Evolution and Global Dynamics for the Focusing Cubic Wave Equation
The focusing cubic wave equation in three spatial dimensions has the explicit solution 2 / t . We study the stability of the blowup described by this solution as t → 0 without symmetry restrictions on the data. Via the conformal invariance of the equation we obtain a companion result for the stabili...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2017-07, Vol.353 (2), p.549-596 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The focusing cubic wave equation in three spatial dimensions has the explicit solution
2
/
t
. We study the stability of the blowup described by this solution as
t
→
0
without symmetry restrictions on the data. Via the conformal invariance of the equation we obtain a companion result for the stability of slow decay in the framework of a hyperboloidal initial value formulation. More precisely, we identify a codimension-1 Lipschitz manifold of initial data leading to solutions that converge to Lorentz boosts of
2
/
t
as
t
→
∞
. These global solutions thus exhibit a slow nondispersive decay, in contrast to small data evolutions. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-017-2887-9 |