Analogue Electromagnetically Induced Transparency Based on Low-loss Metamaterial and its Application in Nanosensor and Slow-light Device

In this paper, we demonstrated a low-loss and high-transmission analogy of electromagnetically induced transparency based on all-dieletric metasurface. The metamaterial unit cell structure is composed of two mutually perpendicular silicon nanoscale bars. Under the joint effects of the neighboring me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plasmonics (Norwell, Mass.) Mass.), 2017-06, Vol.12 (3), p.641-647
Hauptverfasser: Wei, Zhongchao, Li, Xianping, Zhong, Nianfa, Tan, Xiaopei, Zhang, Xiaomeng, Liu, Hongzhan, Meng, Hongyun, Liang, Ruisheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we demonstrated a low-loss and high-transmission analogy of electromagnetically induced transparency based on all-dieletric metasurface. The metamaterial unit cell structure is composed of two mutually perpendicular silicon nanoscale bars. Under the joint effects of the neighboring meta-atoms’ coherent interaction and significant low absorption loss, the transmission and the Q-factor can reach up to 93 % and 139, respectively. Moreover, we use the coupled harmonic oscillator model to analyze the near field interaction between the two elements in the electromagnetically induced transparency (EIT) metamaterial unit cell qualitatively and the effects of parameters on EIT. The figure-of-merit of 42 and the group delay of 0.65 ps are obtained. These characteristics make the metamaterial structure with potential to apply for ultrafast switches, sensor, and slow-light devices.
ISSN:1557-1955
1557-1963
DOI:10.1007/s11468-016-0309-z