Tightness and Convergence of Trimmed Lévy Processes to Normality at Small Times
For nonnegative integers r , s , let ( r , s ) X t be the Lévy process X t with the r largest positive jumps and the s smallest negative jumps up till time t deleted, and let ( r ) X ~ t be X t with the r largest jumps in modulus up till time t deleted. Let a t ∈ R and b t > 0 be non-stochastic f...
Gespeichert in:
Veröffentlicht in: | Journal of theoretical probability 2017-06, Vol.30 (2), p.675-699 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For nonnegative integers
r
,
s
, let
(
r
,
s
)
X
t
be the Lévy process
X
t
with the
r
largest positive jumps and the
s
smallest negative jumps up till time
t
deleted, and let
(
r
)
X
~
t
be
X
t
with the
r
largest jumps in modulus up till time
t
deleted. Let
a
t
∈
R
and
b
t
>
0
be non-stochastic functions in
t
. We show that the tightness of
(
(
r
,
s
)
X
t
-
a
t
)
/
b
t
or
(
(
r
)
X
~
t
-
a
t
)
/
b
t
as
t
↓
0
implies the tightness of all normed ordered jumps, and hence the tightness of the untrimmed process
(
X
t
-
a
t
)
/
b
t
at 0. We use this to deduce that the trimmed process
(
(
r
,
s
)
X
t
-
a
t
)
/
b
t
or
(
(
r
)
X
~
t
-
a
t
)
/
b
t
converges to
N
(0, 1) or to a degenerate distribution as
t
↓
0
if and only if
(
X
t
-
a
t
)
/
b
t
converges to
N
(0, 1) or to the same degenerate distribution, as
t
↓
0
. |
---|---|
ISSN: | 0894-9840 1572-9230 |
DOI: | 10.1007/s10959-015-0658-0 |