Reconstruction of external actions under incomplete information in a linear stochastic equation

The problem of reconstructing unknown external actions in a linear stochastic differential equation is investigated on the basis of the approach of the theory of dynamic inversion. We consider the statement when the simultaneous reconstruction of disturbances in the deterministic and stochastic term...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Steklov Institute of Mathematics 2017-04, Vol.296 (Suppl 1), p.196-205
1. Verfasser: Rozenberg, V. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The problem of reconstructing unknown external actions in a linear stochastic differential equation is investigated on the basis of the approach of the theory of dynamic inversion. We consider the statement when the simultaneous reconstruction of disturbances in the deterministic and stochastic terms of the equation is performed with the use of discrete information on a number of realizations of a part of coordinates of the stochastic process. The problem is reduced to an inverse problem for systems of ordinary differential equations describing the mathematical expectation and covariance matrix of the original process. A finite-step software-oriented solution algorithm based on the method of auxiliary controlled models is proposed. We derive an estimate for its convergence rate with respect to the number of measured realizations.
ISSN:0081-5438
1531-8605
DOI:10.1134/S0081543817020183