Bayesian Lasso with Neighborhood Regression Method for Gaussian Graphical Model
In this paper, we consider the problem of estimating a high dimensional precision matrix of Gaussian graphical model. Taking advantage of the connection between multivariate linear regression and entries of the precision matrix, we propose Bayesian Lasso together with neighborhood regression estimat...
Gespeichert in:
Veröffentlicht in: | Acta Mathematicae Applicatae Sinica 2017-04, Vol.33 (2), p.485-496 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider the problem of estimating a high dimensional precision matrix of Gaussian graphical model. Taking advantage of the connection between multivariate linear regression and entries of the precision matrix, we propose Bayesian Lasso together with neighborhood regression estimate for Gaussian graphical model. This method can obtain parameter estimation and model selection simultaneously. Moreover, the proposed method can provide symmetric confidence intervals of all entries of the precision matrix. |
---|---|
ISSN: | 0168-9673 1618-3932 |
DOI: | 10.1007/s10255-017-0676-z |